Advertisement

Adjustment and Calibration of Dome Port Camera Systems for Underwater Vision

  • Mengkun She
  • Yifan SongEmail author
  • Jochen Mohrmann
  • Kevin Köser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11824)

Abstract

Dome ports act as spherical windows in underwater housings through which a camera can observe objects in the water. As compared to flat glass interfaces, they do not limit the field of view, and they do not cause refraction of light observed by a pinhole camera positioned exactly in the center of the dome. Mechanically adjusting a real lens to this position is a challenging task, in particular for those integrated in deep sea housings. In this contribution a mechanical adjustment procedure based on straight line observations above and below water is proposed that allows for accurate alignments. Additionally, we show a chessboard-based method employing an underwater/above-water image pair to estimate potentially remaining offsets from the dome center to allow refraction correction in photogrammetric applications. Besides providing intuition about the severity of refraction in certain settings, we demonstrate the methods on real data for acrylic and glass domes in the water.

Notes

Acknowledgements

The authors would like to thank Matthias Wieck for designing and manufacturing the mechanical alignment mount for the dome port camera system and Dr. Anne Jordt for sharing refraction source code. This publication has been cofunded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) – Projektnummer 396311425, through the Emmy Noether Programme. This publication also been cofunded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 690416-H2020-SC5-2015-one-stage (ROBUST). The authors of this paper are also grateful for support from the Chinese Scholarship Council (CSC) for Yifan Song.

References

  1. 1.
    Agrawal, A., Ramalingam, S., Taguchi, Y., Chari, V.: A theory of multi-layer flat refractive geometry. In: CVPR (2012)Google Scholar
  2. 2.
    Bouguet, J.: Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html. Accessed 19 May 2019
  3. 3.
    Drap, P.: Underwater photogrammetry for archaeology. In: da Silva, D.C. (ed.) Special Applications of Photogrammetry, Chap. 6. IntechOpen, Rijeka (2012).  https://doi.org/10.5772/33999
  4. 4.
    Fryer, J.G., Fraser, C.S.: On the calibration of underwater cameras. Photogram. Rec. 12, 73–85 (1986)CrossRefGoogle Scholar
  5. 5.
    Grossberg, M.D., Nayar, S.K.: The raxel imaging model and ray-based calibration. Int. J. Comput. Vis. 61(2), 119–137 (2005)CrossRefGoogle Scholar
  6. 6.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, New York (2004) CrossRefGoogle Scholar
  7. 7.
    Harvey, E.S., Shortis, M.R.: Calibration stability of an underwater stereo-video system: implications for measurement accuracy and precision. Mar. Technol. Soc. J. 32, 3–17 (1998)Google Scholar
  8. 8.
    Jordt, A., Köser, K., Koch, R.: Refractive 3D reconstruction on underwater images. Methods Oceanogr. 15–16, 90–113 (2016).  https://doi.org/10.1016/j.mio.2016.03.001. http://www.sciencedirect.com/science/article/pii/S2211122015300086CrossRefGoogle Scholar
  9. 9.
    Kotowski, R.: Phototriangulation in multi-media photogrammetry. In: International Archives of Photogrammetry and Remote Sensing XXVII (1988)Google Scholar
  10. 10.
    Kunz, C., Singh, H.: Hemispherical refraction and camera calibration in underwater vision. In: OCEANS 2008, pp. 1–7, 15–18 September 2008.  https://doi.org/10.1109/OCEANS.2008.5151967
  11. 11.
    Lavest, J.M., Rives, G., Lapresté, J.T.: Underwater camera calibration. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 654–668. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45053-X_42CrossRefGoogle Scholar
  12. 12.
    Luczynski, T., Pfingsthorn, M., Birk, A.: The pinax-model for accurate and efficient refraction correction of underwater cameras in flat-pane housings. Ocean Eng. 133, 9–22 (2017).  https://doi.org/10.1016/j.oceaneng.2017.01.029. http://www.sciencedirect.com/science/article/pii/S0029801817300434CrossRefGoogle Scholar
  13. 13.
    McGlone, J.C. (ed.): Manual of Photogrammetry, 5th edn. ASPRS, Maryland (2004)Google Scholar
  14. 14.
    Menna, F., Nocerino, E., Remondino, F.: Optical Aberrations in Underwater Photogrammetry with Flat and Hemispherical Dome Ports, vol. 10332 (2017).  https://doi.org/10.1117/12.2270765
  15. 15.
    Menna, F., Nocerino, E., Fassi, F., Remondino, F.: Geometric and optic characterization of a hemispherical dome port for underwater photogrammetry. Sensors 16(1), 48 (2016).  https://doi.org/10.3390/s16010048. http://www.mdpi.com/1424-8220/16/1/48 CrossRefGoogle Scholar
  16. 16.
    Moore, E.J.: Underwater photogrammetry. Photogram. Rec. 8(48), 748–763 (1976). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1477-9730.1976.tb00852.xCrossRefGoogle Scholar
  17. 17.
    Nocerino, E., Menna, F., Fassi, F., Remondino, F.: Underwater calibration of dome port pressure housings. In: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 127–134, March 2016.  https://doi.org/10.5194/isprs-archives-XL-3-W4-127-2016
  18. 18.
    PanoramicPhotoGuide: Finding the nodal point. https://panoramic-photo-guide.com/finding-the-nodal-point.html. Accessed 19 May 2019
  19. 19.
    PanoTools.org: Entrance pupil database. https://wiki.panotools.org/Entrance_Pupil_Database. Accessed 19 May 2019
  20. 20.
    Shortis, M.: Calibration techniques for accurate measurements by underwater camera systems. Sensors 15(12), 30810–30826 (2015).  https://doi.org/10.3390/s151229831. http://www.mdpi.com/1424-8220/15/12/29831CrossRefGoogle Scholar
  21. 21.
    Song, Y., Köser, K., Kwasnitschka, T., Koch, R.: Iterative refinement for underwater 3D reconstruction: application to disposed underwater munitions in the baltic sea. In: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W10, pp. 181–187 (2019).  https://doi.org/10.5194/isprs-archives-XLII-2-W10-181-2019. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W10/181/2019/
  22. 22.
    TheDigitalPicture: How to find the nodal point for your lens. https://the-digital-picture.com/News/News-Post.aspx?News=27452. Accessed 19 May 2019
  23. 23.
    Treibitz, T., Schechner, Y., Kunz, C., Singh, H.: Flat refractive geometry. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 51–65 (2012).  https://doi.org/10.1109/TPAMI.2011.105CrossRefGoogle Scholar
  24. 24.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the International Conference on Computer Vision, pp. 666–673. Corfu, Greece (1999). http://www.citeulike.org/user/snsinha/article/238276

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mengkun She
    • 1
    • 2
  • Yifan Song
    • 1
    Email author
  • Jochen Mohrmann
    • 1
  • Kevin Köser
    • 1
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.School of Civil EngineeringChongqing UniversityChongqingChina

Personalised recommendations