Unsupervised Multi-source Domain Adaptation Driven by Deep Adversarial Ensemble Learning

  • Sayan Rakshit
  • Biplab BanerjeeEmail author
  • Gemma Roig
  • Subhasis Chaudhuri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11824)


We address the problem of multi-source unsupervised domain adaptation (MS-UDA) for the purpose of visual recognition. As opposed to single source UDA, MS-UDA deals with multiple labeled source domains and a single unlabeled target domain. Notice that the conventional MS-UDA training is based on formalizing independent mappings between the target and the individual source domains without explicitly assessing the need for aligning the source domains among themselves. We argue that such a paradigm invariably overlooks the inherent category-level correlation among the source domains which, on the contrary, is deemed to bring meaningful complementarity in the learned shared feature space. In this regard, we propose a novel approach which simultaneously (i) aligns the source domains at the class-level in a shared feature space, and (ii) maps the target domain data in the same space through an adversarially trained ensemble of source domain classifiers. Experimental results obtained on the Office-31, ImageCLEF-DA, and Office-CalTech dataset validate that our approach achieves a superior accuracy compared to state-of-the-art methods .


Multi-source domain adaptation Adversarial training Object classification 


  1. 1.
    Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Unsupervised domain adaptation by domain invariant projection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 769–776 (2013)Google Scholar
  2. 2.
    Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, M., Xu, Z., Weinberger, K., Sha, F.: Marginalized denoising autoencoders for domain adaptation. arXiv preprint arXiv:1206.4683 (2012)
  4. 4.
    Crammer, K., Kearns, M., Wortman, J.: Learning from multiple sources. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 321–328. MIT Press (2007).
  5. 5.
    Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2960–2967 (2013)Google Scholar
  6. 6.
    Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ghifary, M., Kleijn, W.B., Zhang, M.: Domain adaptive neural networks for object recognition. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862, pp. 898–904. Springer, Cham (2014). Scholar
  8. 8.
    Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2066–2073. IEEE (2012)Google Scholar
  9. 9.
    Guo, J., Shah, D.J., Barzilay, R.: Multi-source domain adaptation with mixture of experts. arXiv preprint arXiv:1809.02256 (2018)
  10. 10.
    Jhuo, I.H., Liu, D., Lee, D., Chang, S.F.: Robust visual domain adaptation with low-rank reconstruction. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2168–2175. IEEE (2012)Google Scholar
  11. 11.
    Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  12. 12.
    Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791 (2015)
  13. 13.
    Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems, pp. 136–144 (2016)Google Scholar
  14. 14.
    Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation with multiple sources. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21, pp. 1041–1048. Curran Associates, Inc. (2009).
  15. 15.
    Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)CrossRefGoogle Scholar
  16. 16.
    Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 32(3), 53–69 (2015)CrossRefGoogle Scholar
  17. 17.
    Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. arXiv preprint arXiv:1812.01754 (2018)
  18. 18.
    Redko, I., Courty, N., Flamary, R., Tuia, D.: Optimal transport for multi-source domain adaptation under target shift. arXiv preprint arXiv:1803.04899 (2018)
  19. 19.
    Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Adversarial dropout regularization. arXiv preprint arXiv:1711.01575 (2017)
  20. 20.
    Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: AAAI, vol. 6, p. 8 (2016)Google Scholar
  21. 21.
    Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)Google Scholar
  22. 22.
    Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Yu, P.S.: Visual domain adaptation with manifold embedded distribution alignment. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 402–410. ACM (2018)Google Scholar
  23. 23.
    Xu, R., Chen, Z., Zuo, W., Yan, J., Lin, L.: Deep cocktail network: multi-source unsupervised domain adaptation with category shift. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3964–3973 (2018)Google Scholar
  24. 24.
    Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using adaptive SVMS. In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 188–197. ACM (2007)Google Scholar
  25. 25.
    Zhang, L., He, Z., Liu, Y.: Deep object recognition across domains based on adaptive extreme learning machine. Neurocomputing 239, 194–203 (2017)CrossRefGoogle Scholar
  26. 26.
    Zhao, H., Zhang, S., Wu, G., Moura, J.M., Costeira, J.P., Gordon, G.J.: Adversarial multiple source domain adaptation. In: Advances in Neural Information Processing Systems, pp. 8559–8570 (2018)Google Scholar
  27. 27.
    Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sayan Rakshit
    • 1
  • Biplab Banerjee
    • 1
    Email author
  • Gemma Roig
    • 2
  • Subhasis Chaudhuri
    • 1
  1. 1.Indian Institute of Technology BombayMumbaiIndia
  2. 2.Singapore University of Technology and DesignSingaporeSingapore

Personalised recommendations