Advertisement

Iris Verification with Convolutional Neural Network and Unit-Circle Layer

  • Radim ŠpetlíkEmail author
  • Ivan Razumenić
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11824)

Abstract

We propose a novel convolutional neural network to verify a match between two normalized images of the human iris. The network is trained end-to-end and validated on three publicly available datasets yielding state-of-the-art results against four baseline methods. The network performs better by a \(10\%\) margin to the state-of-the-art method on the CASIA.v4 dataset. In the network, we use a novel “Unit-Circle” layer which replaces the Gabor-filtering step in a common iris-verification pipeline. We show that the layer improves the performance of the model up to \(15\%\) on previously-unseen data.

Notes

Acknowledgments

Radim Špetlík was supported by the OP VVV funded project CZ.02.1.01/0.0/0.0/16_019/0000765 and by CTU student grant SGS17/ 185/OHK3/3T/13.

References

  1. 1.
  2. 2.
  3. 3.
    Bowyer, K.W., Flynn, P.J.: The ND-IRIS-0405 iris image dataset. Technical report, Notre Dame CVRLGoogle Scholar
  4. 4.
    Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv:1511.07289 (Nov 2015)
  5. 5.
    Daugman, J.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol. 14(1), 21–30 (2004).  https://doi.org/10.1109/TCSVT.2003.818350CrossRefGoogle Scholar
  6. 6.
    Gangwar, A., Joshi, A.: DeepIrisNet: deep iris representation with applications in iris recognition and cross-sensor iris recognition. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2301–2305, September 2016.  https://doi.org/10.1109/ICIP.2016.7532769
  7. 7.
    Li, Y.H., Huang, P.J., Juan, Y.: An Efficient and Robust Iris Segmentation Algorithm Using Deep Learning (2019).  https://doi.org/10.1155/2019/4568929
  8. 8.
    Liu, N., Zhang, M., Li, H., Sun, Z., Tan, T.: DeepIris: learning pairwise filter bank for heterogeneous iris verification. Pattern Recogn. Lett. 82, 154–161 (2016).  https://doi.org/10.1016/j.patrec.2015.09.016CrossRefGoogle Scholar
  9. 9.
    Masek, L.: Recognition of human iris patterns for biometric identification. Technical report (2003)Google Scholar
  10. 10.
    Menon, H., Mukherjee, A.: Iris biometrics using deep convolutional networks. In: 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–5, May 2018.  https://doi.org/10.1109/I2MTC.2018.8409594
  11. 11.
    Nguyen, K., Fookes, C., Ross, A., Sridharan, S.: Iris recognition with off-the-shelf CNN features: a deep learning perspective. IEEE Access 6, 18848–18855 (2018).  https://doi.org/10.1109/ACCESS.2017.2784352CrossRefGoogle Scholar
  12. 12.
    Othman, N., Dorizzi, B., Garcia-Salicetti, S.: OSIRIS: an open source iris recognition software. Pattern Recogn. Lett. 82, 124–131 (2016).  https://doi.org/10.1016/j.patrec.2015.09.002CrossRefGoogle Scholar
  13. 13.
    Popescu-Bodorin, N., et al.: Cross-sensor iris recognition: LG4000-to-LG2200 comparison. arXiv:1801.01695, January 2018
  14. 14.
    Proença, H., Neves, J.C.: IRINA: iris recognition (even) in inaccurately segmented data. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6747–6756, July 2017.  https://doi.org/10.1109/CVPR.2017.714
  15. 15.
    Sun, Z., Tan, T.: Ordinal measures for iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2211–2226 (2009).  https://doi.org/10.1109/TPAMI.2008.240CrossRefGoogle Scholar
  16. 16.
    Sutra, G., Garcia-Salicetti, S., Dorizzi, B.: The Viterbi algorithm at different resolutions for enhanced iris segmentation. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 310–316, March 2012.  https://doi.org/10.1109/ICB.2012.6199825
  17. 17.
    Tang, X., Xie, J., Li, P.: Deep convolutional features for iris recognition. In: Zhou, J., et al. (eds.) CCBR 2017. LNCS, vol. 10568, pp. 391–400. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69923-3_42CrossRefGoogle Scholar
  18. 18.
    Xiong, X., Torre, F.D.l.: Supervised descent method and its applications to face alignment. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 532–539, June 2013.  https://doi.org/10.1109/CVPR.2013.75
  19. 19.
    Zhang, Q., Li, H., Sun, Z., Tan, T.: Deep feature fusion for iris and periocular biometrics on mobile devices. IEEE Trans. Inf. Forensics Secur. 13(11), 2897–2912 (2018).  https://doi.org/10.1109/TIFS.2018.2833033CrossRefGoogle Scholar
  20. 20.
    Zhao, Z., Kumar, A.: An accurate iris segmentation framework under relaxed imaging constraints using total variation model. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3828–3836, December 2015.  https://doi.org/10.1109/ICCV.2015.436
  21. 21.
    Zhao, Z., Kumar, A.: Towards More Accurate Iris Recognition Using Deeply Learned Spatially Corresponding Features, pp. 3809–3818 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Czech Technical UniversityPragueCzech Republic
  2. 2.Microsoft Development Center SerbiaBelgradeSerbia

Personalised recommendations