Advertisement

Abstract

We present a method to automatically label pathologies in volumetric medical data. Our solution makes use of a healthy statistical shape model to label pathologies in novel targets during model fitting. We achieve this using an EM algorithm: the E-step classifies surface points into pathological or healthy classes based on outliers in predicted correspondences, while the M-step performs probabilistic fitting of the statistical shape model to the healthy region. Our method is independent of pathology type or target anatomy, and can therefore be used for labeling different types of data. The method is able to detect pathologies with higher accuracy than standard robust detection algorithms, which we show using true positive rate and F1 scores. Furthermore, the method provides an estimate of the uncertainty of the synthesized label. The detection also directly improves surface reconstruction results, as shown by a decrease in the average and Hausdorff distances to ground truth. The method can be used for automated diagnosis or as a pre-processing step to accurately label large amounts of images.

Keywords

Statistical shape model Label synthesis Outlier detection Robust non-rigid registration EM algorithm 

References

  1. 1.
    Chetverikov, D., Stepanov, D., Krsek, P.: Robust euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)CrossRefGoogle Scholar
  2. 2.
    Chitphakdithai, N., Duncan, J.S.: Non-rigid registration with missing correspondences in preoperative and postresection brain images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 367–374. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15705-9_45CrossRefGoogle Scholar
  3. 3.
    Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2–3), 114–141 (2003)CrossRefGoogle Scholar
  4. 4.
    Dufour, P.A., Abdillahi, H., Ceklic, L., Wolf-Schnurrbusch, U., Kowal, J.: Pathology hinting as the combination of automatic segmentation with a statistical shape model. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 599–606. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33454-2_74CrossRefGoogle Scholar
  5. 5.
    Egger, B., et al.: Occlusion-aware 3D morphable models and an illumination prior for face image analysis. Int. J. Comput. Vis. 126, 1269–1287 (2018)CrossRefGoogle Scholar
  6. 6.
    Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Symposium on Geometry Processing, vol. 2, p. 5 (2005)Google Scholar
  7. 7.
    Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969)CrossRefGoogle Scholar
  8. 8.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)CrossRefGoogle Scholar
  9. 9.
    Lüthi, M., Albrecht, T., Vetter, T.: Building shape models from lousy data. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 1–8. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04271-3_1CrossRefGoogle Scholar
  10. 10.
    Lüthi, M., Forster, A., Gerig, T., Vetter, T.: Shape modeling using Gaussian process morphable models. In: Statistical Shape and Deformation Analysis, pp. 165–191. Elsevier (2017)Google Scholar
  11. 11.
    Lüthi, M., Gerig, T., Jud, C., Vetter, T.: Gaussian process morphable models. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1860–1873 (2018)CrossRefGoogle Scholar
  12. 12.
    Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities (2016)CrossRefGoogle Scholar
  13. 13.
    Meer, P., Mintz, D., Rosenfeld, A., Kim, D.Y.: Robust regression methods for computer vision: a review. Int. J. Comput. Vis. 6(1), 59–70 (1991)CrossRefGoogle Scholar
  14. 14.
    Morel-Forster, A., Gerig, T., Lüthi, M., Vetter, T.: Probabilistic fitting of active shape models. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 137–146. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-04747-4_13CrossRefGoogle Scholar
  15. 15.
    Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  16. 16.
    Pajdla, T., Van Gool, L.: Matching of 3-D curves using semi-differential invariants. In: Proceedings of IEEE International Conference on Computer Vision, pp. 390–395. IEEE (1995)Google Scholar
  17. 17.
    Reyneke, C., Thusini, X., Douglas, T., Vetter, T., Mutsvangwa, T.: Construction and validation of image-based statistical shape and intensity models of bone. In: 2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC), pp. 1–4. IEEE (2018)Google Scholar
  18. 18.
    Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59050-9_12CrossRefGoogle Scholar
  19. 19.
    Thompson, P.M., Woods, R.P., Mega, M.S., Toga, A.W.: Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Hum. Brain Mapp. 9(2), 81–92 (2000)CrossRefGoogle Scholar
  20. 20.
    Toews, M., Arbel, T.: A statistical parts-based model of anatomical variability. IEEE Trans. Med. Imaging 26(4), 497–508 (2007)CrossRefGoogle Scholar
  21. 21.
    Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Tomiyama, N., Sato, Y.: Automated CT segmentation of diseased hip using hierarchical and conditional statistical shape models. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 190–197. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40763-5_24CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dana Rahbani
    • 1
    Email author
  • Andreas Morel-Forster
    • 1
  • Dennis Madsen
    • 1
  • Marcel Lüthi
    • 1
  • Thomas Vetter
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of BaselBaselSwitzerland

Personalised recommendations