Advertisement

Completeness and Incompleteness of Synchronous Kleene Algebra

  • Jana WagemakerEmail author
  • Marcello Bonsangue
  • Tobias Kappé
  • Jurriaan Rot
  • Alexandra Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11825)

Abstract

Synchronous Kleene algebra (SKA), an extension of Kleene algebra (KA), was proposed by Prisacariu as a tool for reasoning about programs that may execute synchronously, i.e., in lock-step. We provide a countermodel witnessing that the axioms of SKA are incomplete w.r.t. its language semantics, by exploiting a lack of interaction between the synchronous product operator and the Kleene star. We then propose an alternative set of axioms for SKA, based on Salomaa’s axiomatisation of regular languages, and show that these provide a sound and complete characterisation w.r.t. the original language semantics.

Notes

Acknowledgements

The first author is grateful for discussions with Hans-Dieter Hiep and Benjamin Lion.

References

  1. 1.
    Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. 155(2), 291–319 (1996).  https://doi.org/10.1016/0304-3975(95)00182-4MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Backhouse, R.: Closure algorithms and the star-height problem of regular languages. PhD thesis, University of London (1975)Google Scholar
  3. 3.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006).  https://doi.org/10.1016/j.scico.2005.10.008MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf. Control 60(1–3), 109–137 (1984).  https://doi.org/10.1016/S0019-9958(84)80025-XMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boffa, M.: Une remarque sur les systèmes complets d’identités rationnelles. ITA 24, 419–428 (1990)zbMATHGoogle Scholar
  6. 6.
    Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In: Proceedings of Principles of Programming Languages (POPL), pp. 457–468 (2013).  https://doi.org/10.1145/2429069.2429124
  7. 7.
    Broda, S., Cavadas, S., Ferreira, M., Moreira, N.: Deciding synchronous Kleene algebra with derivatives. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 49–62. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22360-5_5CrossRefGoogle Scholar
  8. 8.
    Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964).  https://doi.org/10.1145/321239.321249MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    John Horton Conway: Regular Algebra and Finite Machines. Chapman and Hall Ltd., London (1971)Google Scholar
  10. 10.
    Foster, S., Struth, G.: On the fine-structure of regular algebra. J. Autom. Reason. 54(2), 165–197 (2015).  https://doi.org/10.1007/s10817-014-9318-9MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hayes, I.J.: Generalised rely-guarantee concurrency: an algebraic foundation. Formal Asp. Comput. 28(6), 1057–1078 (2016).  https://doi.org/10.1007/s00165-016-0384-0MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hayes, I.J., Colvin, R.J., Meinicke, L.A., Winter, K., Velykis, A.: An algebra of synchronous atomic steps. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 352–369. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48989-6_22CrossRefGoogle Scholar
  13. 13.
    Hayes, I.J., Meinicke, L.A., Winter, K., Colvin, R.J.: A synchronous program algebra: a basis for reasoning about shared-memory and event-based concurrency. Formal Asp. Comput. 31(2), 133–163 (2019).  https://doi.org/10.1007/s00165-018-0464-4MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kozen, D.: Myhill-Nerode relations on automatic systems and the completeness of Kleene algebra. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 27–38. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44693-1_3CrossRefGoogle Scholar
  15. 15.
    Hoare, T., van Staden, S., Möller, B., Struth, G., Zhu, H.: Developments in concurrent Kleene algebra. J. Log. Algebr. Meth. Program. 85(4), 617–636 (2016).  https://doi.org/10.1016/j.jlamp.2015.09.012MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kappé, T., Brunet, P., Rot, J., Silva, A., Wagemaker, J., Zanasi, F.: Kleene algebra with observations. arXiv:1811.10401
  17. 17.
    Kappé, T., Brunet, P., Silva, A., Zanasi, F.: Concurrent Kleene algebra: free model and completeness. In: Proceedings of European Symposium on Programming (ESOP), pp. 856–882 (2018).  https://doi.org/10.1007/978-3-319-89884-1_30CrossRefGoogle Scholar
  18. 18.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994).  https://doi.org/10.1006/inco.1994.1037MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kozen, D.: Myhill-Nerode relations on automatic systems and the completeness of Kleene algebra. In: Proceedings of Symposium on Theoretical Aspects of Computer Science (STACS), pp. 27–38 (2001).  https://doi.org/10.1007/3-540-44693-1_3CrossRefGoogle Scholar
  20. 20.
    Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decidability. In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63172-0_43CrossRefGoogle Scholar
  21. 21.
    Krob, D.: Complete systems of B-rational identities. Theor. Comput. Sci. 89(2), 207–343 (1991).  https://doi.org/10.1016/0304-3975(91)90395-IMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Laurence, M.R., Struth, G.: Completeness theorems for pomset languages and concurrent Kleene algebras. arXiv:1705.05896
  23. 23.
    Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25, 267–310 (1983).  https://doi.org/10.1016/0304-3975(83)90114-7MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Prisacariu, C.: Synchronous Kleene algebra. J. Log. Algebr. Program. 79(7), 608–635 (2010).  https://doi.org/10.1016/j.jlap.2010.07.009MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of streams, automata, and power series. Theor. Comput. Sci. 308(1–3), 1–53 (2003).  https://doi.org/10.1016/S0304-3975(02)00895-2MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Salomaa, A.: Two complete axiom systems for the algebra of regular events. J. ACM 13(1), 158–169 (1966).  https://doi.org/10.1145/321312.321326MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Silva, A.: Kleene Coalgebra. PhD thesis, Radboud Universiteit Nijmegen (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jana Wagemaker
    • 1
    Email author
  • Marcello Bonsangue
    • 2
  • Tobias Kappé
    • 1
  • Jurriaan Rot
    • 1
    • 3
  • Alexandra Silva
    • 1
  1. 1.University College LondonLondonUK
  2. 2.Leiden UniversityLeidenThe Netherlands
  3. 3.Radboud UniversityNijmegenThe Netherlands

Personalised recommendations