Studying the Evolution of the ‘Circular Economy’ Concept Using Topic Modelling

  • Sampriti MahantyEmail author
  • Frank Boons
  • Julia Handl
  • Riza Batista-Navarro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11872)


Circular Economy has gained immense popularity for its perceived capacity to operationalise sustainable development. However, a comprehensive long-term understanding of the concept, characterising its evolution in academic literature, has not yet been provided. As a first step, we apply unsupervised topic models on academic articles to identify patterns in concept evolution. We generate topics using LDA, and investigate topic prevalence over time. We determine the optimal number of topics for the model (k) through coherence scorings and evaluate the topic model results by expert judgement. Specifying k as 20, we find topics in the literature focussing on resources, business models, process modelling, conceptual research and policies. We identify a shift in the research focus of contemporary literature, moving away from the Chinese pre-dominance to a European perspective, along with a shift towards micro level interventions, e.g., circular design, business models, around 2014–2015.


Circular economy Topic modelling Concept evolution 



The authors are grateful to Helen Holmes, Wouter Spekkink, Maria Sharmina, Malte Roedl, and Carly Fletcher for serving as the experts to evaluate the topic model results and providing their valuable feedback.

Sampriti Mahanty acknowledges the support from Alliance Manchester Business School.


  1. 1.
    Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd International Conference on Machine learning, pp. 113–120. ACM, 2006 JuneGoogle Scholar
  2. 2.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  3. 3.
    Blomsma, F., Brennan, G.: The emergence of circular economy: a new framing around prolonging resource productivity. J. Ind. Ecol. 21(3), 603–614 (2017)CrossRefGoogle Scholar
  4. 4.
    Bocken, N.M., De Pauw, I., Bakker, C., van der Grinten, B.: Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 33(5), 308–320 (2016)Google Scholar
  5. 5.
    Bolelli, L., Ertekin, Ş., Giles, C.L.: Topic and trend detection in text collections using Latent Dirichlet Allocation. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 776–780. Springer, Heidelberg (2009). Scholar
  6. 6.
    Boons, F., Spekkink, W., Jiao, W.: A process perspective on industrial symbiosis: theory, methodology, and application. J. Ind. Ecol. 18(3), 341–355 (2014)CrossRefGoogle Scholar
  7. 7.
    Boons, F., Spekkink, W., Mouzakitis, Y.: The dynamics of industrial symbiosis: a proposal for a conceptual framework based upon a comprehensive literature review. J. Clean. Prod. 19(9–10), 905–911 (2011)CrossRefGoogle Scholar
  8. 8.
    Bradie, M.: Assessing evolutionary epistemology. Biol. Philos. 1(4), 401–459 (1986)CrossRefGoogle Scholar
  9. 9.
    Chang, J.: lda: Collapsed Gibbs Sampling Methods for Topic Models. R package version 1.2.3 (2010).
  10. 10.
    Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., Blei, D.M.: Reading tea leaves: how humans interpret topic models. In: Advances in Neural Information Processing Systems, pp. 288–296 (2009)Google Scholar
  11. 11.
    Chen, T.H., Thomas, S.W., Hassan, A.E.: A survey on the use of topic models when mining software repositories. Empir. Softw. Eng. 21(5), 1843–1919 (2016)CrossRefGoogle Scholar
  12. 12.
    Feinerer, I.: Introduction to the tm Package. Text Mining in R (2015).
  13. 13.
    Geisendorf, S., Pietrulla, F.: The circular economy and circular economic concepts—a literature analysis and redefinition. Thunderbird Int. Bus. Rev. 60(5), 771–782 (2018)CrossRefGoogle Scholar
  14. 14.
    Geissdoerfer, M., Savaget, P., Bocken, N.M., Hultink, E.J.: The circular economy–a new sustainability paradigm? J. Clean. Prod. 143, 757–768 (2017)CrossRefGoogle Scholar
  15. 15.
    Ghisellini, P., Cialani, C., Ulgiati, S.: A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 114, 11–32 (2016)CrossRefGoogle Scholar
  16. 16.
    Goertz, G.: Social Science Concepts: A User’s Guide. Princeton University Press, Princeton (2006)Google Scholar
  17. 17.
    Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci. 101(Suppl. 1), 5228–5235 (2004)CrossRefGoogle Scholar
  18. 18.
    Grun, B., Hornik, K.: Topicmodels: an R package for fitting topic models. J. Stat. Softw. 40(13), 1–30 (2011)., ISSN 1548-7660
  19. 19.
    Hall, D., Jurafsky, D., Manning, C.D.: Studying the history of ideas using topic models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 363–371. Association for Computational Linguistics, 2008 OctoberGoogle Scholar
  20. 20.
    Hindle, A., Godfrey, M.W., Holt, R.C.: What’s hot and what’s not: windowed developer topic analysis. In: 2009 IEEE International Conference on Software Maintenance, pp. 339–348. IEEE, 2009 SeptemberGoogle Scholar
  21. 21.
    Hull, D.L.: Central subjects and historical narratives. Hist. Theory 14(3), 253–274 (1975)CrossRefGoogle Scholar
  22. 22.
    Hull, D.L.: Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science. University of Chicago Press, Chicago (2010)Google Scholar
  23. 23.
    Jiao, W., Boons, F.: Policy durability of Circular Economy in China: a process analysis of policy translation. Resour. Conserv. Recycl. 117, 12–24 (2017)CrossRefGoogle Scholar
  24. 24.
    Kao, A., Poteet, S.R. (eds.): Natural language processing and text mining. Springer, London (2007). Scholar
  25. 25.
    Kirchherr, J., Reike, D., Hekkert, M.: Conceptualizing the circular economy: an analysis of 114 definitions. Resour. Conserv. Recycl. 127, 221–232 (2017)CrossRefGoogle Scholar
  26. 26.
    Kuhn, T.S.: The road since structure. In: PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, vol. 1990, no. 2, pp. 3–13. Philosophy of Science Association, 1990 JanuaryGoogle Scholar
  27. 27.
    Lazarevic, D., Valve, H.: Narrating expectations for the circular economy: towards a common and contested European transition. Energy Res. Soc. Sci. 31, 60–69 (2017)CrossRefGoogle Scholar
  28. 28.
    Margolis, E., Laurence, S.: Concepts. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. (Summer 2019 Edition)
  29. 29.
    Masi, D., Kumar, V., Garza-Reyes, J.A., Godsell, J.: Towards a more circular economy: exploring the awareness, practices, and barriers from a focal firm perspective. Prod. Plan. Control. 29(6), 539–550 (2018)CrossRefGoogle Scholar
  30. 30.
    Merli, R., Preziosi, M., Acampora, A.: How do scholars approach the circular economy? A systematic literature review. J. Clean. Prod. 178, 703–722 (2018)CrossRefGoogle Scholar
  31. 31.
    Mimno, D., Wallach, H.M., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 262–272. Association for Computational Linguistics, 2011 JulyGoogle Scholar
  32. 32.
    Newman, D., Noh, Y., Talley, E., Karimi, S., Baldwin, T.: Evaluating topic models for digital libraries. In: Proceedings of the 10th Annual Joint Conference on Digital Libraries, pp. 215–224. ACM, 2010 JuneGoogle Scholar
  33. 33.
    Nobre, G.C., Tavares, E.: Scientific literature analysis on big data and internet of things applications on circular economy: a bibliometric study. Scientometrics 111(1), 463–492 (2017)CrossRefGoogle Scholar
  34. 34.
    Prendeville, S., Cherim, E., Bocken, N.: Circular cities: mapping six cities in transition. Environ. Innov. Soc. Transit. 26, 171–194 (2018)CrossRefGoogle Scholar
  35. 35.
    Röder, M., Both, A., Hinneburg, A.: Exploring the space of topic coherence measures. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, pp. 399–408. ACM, 2015 FebruaryGoogle Scholar
  36. 36.
    Rosner, F., Hinneburg, A., Röder, M., Nettling, M., Both, A.: Evaluating topic coherence measures. arXiv preprint arXiv:1403.6397 (2014)
  37. 37.
    Shin, S.H., Kwon, O., Ruan, X., Chhetri, P., Lee, P., Shahparvari, S.: Analyzing sustainability literature in maritime studies with text mining. Sustainability 10(10), 3522 (2018)CrossRefGoogle Scholar
  38. 38.
    Spekkink, W.: Institutional capacity building for industrial symbiosis in the Canal Zone of Zeeland in the Netherlands: a process analysis. J. Clean. Prod. 52, 342–355 (2013)CrossRefGoogle Scholar
  39. 39.
    Stevens, K., Kegelmeyer, P., Andrzejewski, D., Buttler, D.: Exploring topic coherence over many models and many topics. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 952–961. Association for Computational Linguistics, 2012 JulyGoogle Scholar
  40. 40.
    Su, B., Heshmati, A., Geng, Y., Yu, X.: A review of the circular economy in China: moving from rhetoric to implementation. J. Clean. Prod. 42, 215–227 (2013)CrossRefGoogle Scholar
  41. 41.
    Sun, L., Yin, Y.: Discovering themes and trends in transportation research using topic modeling. Transp. Res. Part C Emerg. Technol. 77, 49–66 (2017)CrossRefGoogle Scholar
  42. 42.
    Thomas, S.W., Adams, B., Hassan, A.E., Blostein, D.: Modeling the evolution of topics in source code histories. In: Proceedings of the 8th Working Conference on Mining Software Repositories, pp. 173–182. ACM, 2011 MayGoogle Scholar
  43. 43.
    Thomas, S.W., Adams, B., Hassan, A.E., Blostein, D.: Studying software evolution using topic models. Sci. Comput. Program. 80, 457–479 (2014)CrossRefGoogle Scholar
  44. 44.
    Wang, X., McCallum, A.: Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 424–433. ACM, 2006 AugustGoogle Scholar
  45. 45.
    Zhao, W., et al.: A heuristic approach to determine an appropriate number of topics in topic modeling. In: BMC Bioinformatics, vol. 16, no. 13, p. S8. BioMed Central, 2015 DecemberGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Alliance Manchester Business SchoolThe University of ManchesterManchesterUK
  2. 2.School of Computer ScienceThe University of ManchesterManchesterUK

Personalised recommendations