Advertisement

Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images

  • Pedro Pons
  • Reinier NoordaEmail author
  • Andrea Nevárez
  • Adrián Colomer
  • Vicente Pons Beltrán
  • Valery Naranjo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11872)

Abstract

Wireless Capsule Endoscopy is a technique that allows for observation of the entire gastrointestinal tract in an easy and non-invasive way. However, its greatest limitation lies in the time required to analyze the large number of images generated in each examination for diagnosis, which is about 2 h. This causes not only a high cost, but also a high probability of a wrong diagnosis due to the physician’s fatigue, while the variable appearance of abnormalities requires continuous concentration. In this work, we designed and developed a system capable of automatically detecting blood based on classification of extracted regions, following two different classification approaches. The first method consisted in extraction of hand-crafted features that were used to train machine learning algorithms, specifically Support Vector Machines and Random Forest, to create models for classifying images as healthy tissue or blood. The second method consisted in applying deep learning techniques, concretely convolutional neural networks, capable of extracting the relevant features of the image by themselves. The best results (95.7% sensitivity and 92.3% specificity) were obtained for a Random Forest model trained with features extracted from the histograms of the three HSV color space channels. For both methods we extracted square patches of several sizes using a sliding window, while for the first approach we also implemented the waterpixels technique in order to improve the classification results.

Keywords

Wireless capsule endoscopy Blood detection Machine learning Hand-crafted features Deep learning Convolutional neural networks 

Notes

Acknowledgments

This work was funded by the European Union’s H2020: MSCA: ITN program for the “Wireless In-body Environment Communication - WiBEC” project under the grant agreement no. 675353. Additionally, we gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research.

References

  1. 1.
    Berens, J., Finlayson, G.D., Qiu, G.: Image indexing using compressed colour histograms. IEE Proc. Vis., Image Signal Process. 147(4), 349–355 (2000).  https://doi.org/10.1049/ip-vis:20000630CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).  https://doi.org/10.1023/A:1010933404324CrossRefzbMATHGoogle Scholar
  3. 3.
    Buscaglia, J.M., et al.: Performance characteristics of the suspected blood indicator feature in capsule endoscopy according to indication for study. Clin. Gastroenterol. Hepatol. 6(3), 298–301 (2008).  https://doi.org/10.1016/j.cgh.2007.12.029CrossRefGoogle Scholar
  4. 4.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995).  https://doi.org/10.1007/BF00994018CrossRefzbMATHGoogle Scholar
  5. 5.
    Li, B., Meng, M.Q.H.: Computer-aided detection of bleeding regions for capsule endoscopy images. IEEE Trans. Biomed. Eng. 56(4), 1032–1039 (2009).  https://doi.org/10.1109/TBME.2008.2010526MathSciNetCrossRefGoogle Scholar
  6. 6.
    Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decencière, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707–3716 (2015).  https://doi.org/10.1109/TIP.2015.2451011MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Novozámskỳ, A., Flusser, J., Tachecí, I., Sulík, L., Bureš, J., Krejcar, O.: Automatic blood detection in capsule endoscopy video. J. Biomed. Opt. 21(12), 126007 (2016).  https://doi.org/10.1117/1.JBO.21.12.126007CrossRefGoogle Scholar
  8. 8.
    Signorelli, C., Villa, F., Rondonotti, E., Abbiati, C., Beccari, G., de Franchis, R.: Sensitivity and specificity of the suspected blood identification system in video capsule enteroscopy. Endoscopy 37(12), 1170–1173 (2005).  https://doi.org/10.1055/s-2005-870410CrossRefGoogle Scholar
  9. 9.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  10. 10.
    Varma, S., Simon, R.: Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 7(1), 91 (2006).  https://doi.org/10.1186/1471-2105-7-91CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pedro Pons
    • 1
  • Reinier Noorda
    • 2
    Email author
  • Andrea Nevárez
    • 3
  • Adrián Colomer
    • 1
  • Vicente Pons Beltrán
    • 3
  • Valery Naranjo
    • 1
  1. 1.Instituto de Investigación e Innovación en Bioingeniería (I3B)Universitat Politècnica de ValènciaValenciaSpain
  2. 2.iTEAM Research InstituteUniversitat Politècnica de ValènciaValenciaSpain
  3. 3.Unidad de Endoscopia Digestiva, Hospital Universitari i Politécnic La Fe, Digestive Endoscopy Research Group, IIS La FEValenciaSpain

Personalised recommendations