Advertisement

A Novel Technique for Improving the Robustness to Sensor Rotation in Hand Gesture Recognition Using sEMG

  • Victor H. VimosEmail author
  • Marco Benalcázar
  • Alex F. Oña
  • Patricio J. Cruz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1078)

Abstract

Hand gesture recognition consists of identifying the class among a set of classes of a hand movement given. Surface electromyography (sEMG) measures the electrical activity generated by voluntary contractions of skeletal muscles. The performance of a recognition system is affected significantly by the orientation of the armband. This orientation could change every time that the user wears the armband. In this paper, a novel technique to improve the robustness in a recognition system with variation in the orientation of the armband is proposed. To test the performance of the proposed model, 4 experiments at recognizing 6 hand gestures are executed. In these experiments the proposed method shows a recognition accuracy of 92.4% versus 59.5%, which corresponds to the accuracy of a traditional recognition model without the correction of orientation.

Keywords

Hand gesture recognition sEMG SVM 

Notes

Acknowledgment

The authors gratefully acknowledge the financial support provided by the Escuela Politécnica Nacional and the Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia (CEDIA) for the development of the research project CEPRA-2019-13-Reconocimiento de Gestos.

References

  1. 1.
    Artemiadis, P.K., Kyriakopoulos, K.J.: EMG-based position and force control of a robot arm: application to teleoperation and orthosis. In: 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1–6. IEEE (2007)Google Scholar
  2. 2.
    Tan, D., Saponas, T.S., Morris, D., Turner, J.: Wearable electromyography-based controllers for human-computer interface. U.S. Patent 8,170,656, issued 1 May 2012Google Scholar
  3. 3.
    Muceli, S., Farina, D.: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Trans. Neural Syst. Rehabil. Eng. 20(3), 371–378 (2011)CrossRefGoogle Scholar
  4. 4.
    Edwards, A.L., Dawson, M.R., Hebert, J.S., Sherstan, C., Sutton, R.S., Chan, K.M., Pilarski, P.M.: Application of real-time machine learning to myoelectric prosthesis control: a case series in adaptive switching. Prosthet. Orthot. Int. 40(5), 573–581 (2016)CrossRefGoogle Scholar
  5. 5.
    Tenore, F.V.G., Ramos, A., Fahmy, A., Acharya, S., Etienne-Cummings, R., Thakor, N.V.: Decoding of individuated finger movements using surface electromyography. IEEE Trans. Biomed. Eng. 56(5), 1427–1434 (2008)CrossRefGoogle Scholar
  6. 6.
    Nazemi, A., Maleki, A.: Artificial neural network classifier in comparison with LDA and LS-SVM classifiers to recognize 52 hand postures and movements. In: 2014 4th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 18–22. IEEE (2014) Google Scholar
  7. 7.
    Benalcázar, M.E., Motoche, C., Zea, J.A., Jaramillo, A.G., Anchundia, C.E., Zambrano, P., Segura, M., Palacios, F.B., Pérez, M.: Real-time hand gesture recognition using the myo armband and muscle activity detection. In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), pp. 1–6. IEEE (2017)Google Scholar
  8. 8.
    Kim, J., Mastnik, S., André, E.: EMG-based hand gesture recognition for realtime biosignal interfacing. In: Proceedings of the 13th International Conference on Intelligent User Interfaces, pp. 30–39. ACM (2008)Google Scholar
  9. 9.
    Zhang, Y., et al.: Wearing-independent hand gesture recognition method based on EMG armband. Pers. Ubiquit. Comput. 22(3), 511–524 (2018)CrossRefGoogle Scholar
  10. 10.
    gForce arm band. http://www.oymotion.com/
  11. 11.
    Kerber, F., Puhl, M., Krüger, A.: User-independent real-time hand gesture recognition based on surface electromyography. In: Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services, p. 36. ACM (2017)Google Scholar
  12. 12.
    http://www.myo.com. Accessed 17 Oct 2018
  13. 13.
  14. 14.
    eCon arm band. http://econtek.cn/
  15. 15.
    Weissmann, J., Salomon, R.: Gesture recognition for virtual reality applications using data gloves and neural networks. In: Proceedings IJCNN, vol. 3, pp. 2043–2046 (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Escuela Politécnica NacionalQuitoEcuador
  2. 2.Departamento de Informática y Ciencias de la ComputaciónEscuela Politécnica NacionalQuitoEcuador
  3. 3.Escuela de Formación de TecnólogosEscuela Politécnica NacionalQuitoEcuador
  4. 4.Departamento de Automatización y Control IndustrialEscuela Politécnica NacionalQuitoEcuador

Personalised recommendations