Advertisement

Towards a Robotic Personal Trainer for the Elderly

  • J. A. RinconEmail author
  • A. CostaEmail author
  • P. NovaisEmail author
  • V. JulianEmail author
  • C. CarrascosaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11871)

Abstract

The use of robots in the environment of the elderly has grown significantly in recent years. The idea is to try to increase the comfort and well-being of older people through the employment of some kind of automated processes that simplify daily work. In this paper we present a prototype of a personal robotic trainer which, together with a non-invasive sensor, allows caregivers to monitor certain physical activities in order to improve their performance. In addition, the proposed system also takes into account how the person feels during the performance of the physical exercises and thus, determine more precisely if the exercise is appropriate or not for a specific person.

Keywords

Assistant robot Emotion detection Elderly 

Notes

Acknowledgements

This work was partly supported by the Spanish Government (RTI2018-095390-B-C31) and FCT—Fundação para a Ciência e Tecnología through the Post-Doc scholarship SFRH/BPD/102696/2014 (A. Costa) and UID/CEC/00319/2019.

References

  1. 1.
    United Nations, Department of Economic and Social Affairs, Population Division. World population ageing 2015. (ST/ESA/SER.A/390) (2015)Google Scholar
  2. 2.
    Lachman, M.E., Lipsitz, L., Lubben, J., Castaneda-Sceppa, C., Jette, A.M.: When adults don’t exercise: behavioral strategies to increase physical activity in sedentary middle-aged and older adults. Innov. Aging 2(1), igy007 (2018)CrossRefGoogle Scholar
  3. 3.
    Costa, A., Julian, V., Novais, P. (eds.): Personal Assistants: Emerging Computational Technologies. ISRL, vol. 132. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-62530-0CrossRefGoogle Scholar
  4. 4.
    Marino, D., Miceli, A., Carlizzi, D.N., Quattrone, G., Sancin, C., Turchi, M.: Telemedicine and impact of changing paradigm in healthcare. In: Calabrò, F., Della Spina, L., Bevilacqua, C. (eds.) ISHT 2018. SIST, vol. 100, pp. 39–43. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-92099-3_5CrossRefGoogle Scholar
  5. 5.
    Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)CrossRefGoogle Scholar
  6. 6.
    Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2012)CrossRefGoogle Scholar
  7. 7.
    Martinez-Martin, E., del Pobil, A.P.: Personal robot assistants for elderly care: an overview. In: Costa, A., Julian, V., Novais, P. (eds.) Personal Assistants: Emerging Computational Technologies. ISRL, vol. 132, pp. 77–91. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-62530-0_5CrossRefGoogle Scholar
  8. 8.
    Čaić, M., Avelino, J., Mahr, D., Odekerken-Schröder, G., Bernardino, A.: Robotic versus human coaches for active aging: an automated social presence perspective. Int. J. Soc. Rob. (2019).  https://doi.org/10.1007/s12369-018-0507-2
  9. 9.
    Mateus, A., et al.: A domestic assistive robot developed through robot competitions. In: IJCAI 2016 Workshop on Autonomous Mobile Service Robots (2016)Google Scholar
  10. 10.
    Portugal, D., Santos, L., Alvito, P., Dias, J., Samaras, G., Christodoulou, E.: SocialRobot: an interactive mobile robot for elderly home care. In: 2015 IEEE/SICE International Symposium on System Integration (SII). IEEE, December 2015Google Scholar
  11. 11.
    Martinez-Martin, E., Cazorla, M.: A socially assistive robot for elderly exercise promotion. IEEE Access 7, 75515–75529 (2019)CrossRefGoogle Scholar
  12. 12.
    Martinez-Martin, E., Cazorla, M.: Rehabilitation technology: assistance from hospital to home. Comput. Intell. Neurosci. 1–8, 2019 (2019)Google Scholar
  13. 13.
    Cruz, E., et al.: Geoffrey: an automated schedule system on a social robot for the intellectually challenged. Comput. Intell. Neurosci. 2018, 1–17 (2018)CrossRefGoogle Scholar
  14. 14.
    Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 12(2), 74 (2011)CrossRefGoogle Scholar
  15. 15.
    Vepakomma, P., De, D., Das, S.K., Bhansali, S.: A-wristocracy: deep learning on wrist-worn sensing for recognition of user complex activities. In: 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, June 2015Google Scholar
  16. 16.
    Cao, L., Wang, Y., Zhang, B., Jin, Q., Vasilakos, A.V.: GCHAR: an efficient group-based context—aware human activity recognition on smartphone. J. Parallel Distrib. Comput. 118, 67–80 (2018)CrossRefGoogle Scholar
  17. 17.
    Rincon, J.A., Martin, A., Costa, Â., Novais, P., Julián, V., Carrascosa, C.: Emir: an emotional intelligent robot assistant. In: AfCAI (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut Valencià d’Investigació en Intelligència Artificial (VRAIN)Universitat Politècnica de ValènciaValenciaSpain
  2. 2.ALGORITMI CentreUniversidade do MinhoBragaPortugal

Personalised recommendations