Advertisement

Orchids Classification Using Spatial Transformer Network with Adaptive Scaling

  • Watcharin SarachaiEmail author
  • Jakramate BootkrajangEmail author
  • Jeerayut ChaijaruwanichEmail author
  • Samerkae SomhomEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11871)

Abstract

The orchids families are large, diverse flowering plants in the tropical areas. It is a challenging task to classify orchid species from images. In this paper, we proposed an adaptive classification model of the orchid images by using a Deep Convolutional Neural Network (D-CNN). The first part of the model improved the quality of input feature maps using an adaptive Spatial Transformer Network (STN) module by performing a spatial transformation to warp an input image which was split into different locations and scales. We applied D-CNN to extract the image features from the previous step and warp into four branches. Then, we concatenated the feature channels and reduced the dimension by an estimation block. Finally, the feature maps would be forwarded to the prediction network layers to predict the orchid species. We verified the efficiency of the proposed method by conducting experiments on our data set of 52 classes of orchid flowers, containing 3,559 samples. Our results achieved an average of 93.32% classification accuracy, which is higher than the existing D-CNN models.

Keywords

Orchids images Classification Deep learning 

References

  1. 1.
    Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)Google Scholar
  2. 2.
    Arwatchananukul, S., Charoenkwan, P., Xu, D.: POC: paphiopedilum orchid classifier. In: 2015 IEEE 14th International Conference on ICCI*CC, pp. 206–212. IEEE (2015)Google Scholar
  3. 3.
    Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using deep neural networks. In: Proceedings of the IEEE Conference on CVPR, pp. 2147–2154 (2014)Google Scholar
  4. 4.
    Guru, D., Kumar, Y.S., Manjunath, S.: Textural features in flower classification. Math. Comput. Model. 54(3–4), 1030–1036 (2011)CrossRefGoogle Scholar
  5. 5.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on CVPR, pp. 770–778 (2016)Google Scholar
  6. 6.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46493-0_38CrossRefGoogle Scholar
  7. 7.
    Hiary, H., Saadeh, H., Saadeh, M., Yaqub, M.: Flower classification using deep convolutional neural networks. IET Comput. Vision 12(6), 855–862 (2018)CrossRefGoogle Scholar
  8. 8.
    Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)Google Scholar
  9. 9.
    Johnson, J., Karpathy, A., Fei-Fei, L.: DenseCap: fully convolutional localization networks for dense captioning. In: Proceedings of the IEEE Conference on CVPR, pp. 4565–4574 (2016)Google Scholar
  10. 10.
    Li, L., Qiao, Y.: Flower image retrieval with category attributes. In: 2014 4th IEEE International Conference on ICIST, pp. 805–808. IEEE (2014)Google Scholar
  11. 11.
    Liu, W., Rao, Y., Fan, B., Song, J., Wang, Q.: Flower classification using fusion descriptor and SVM. In: 2017 International ISC2, pp. 1–4. IEEE (2017)Google Scholar
  12. 12.
    Liu, Y., Tang, F., Zhou, D., Meng, Y., Dong, W.: Flower classification via convolutional neural network. In: International Conference on FSPMA, pp. 110–116. IEEE (2016)Google Scholar
  13. 13.
    Nilsback, M.E., Zisserman, A.: A visual vocabulary for flower classification. In: 2006 IEEE Computer Society Conference on CVPR, vol. 2, pp. 1447–1454. IEEE (2006)Google Scholar
  14. 14.
    Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: Sixth Indian Conference on Computer Vision, Graphics & Image Processing, 2008, ICVGIP 2008, pp. 722–729. IEEE (2008)Google Scholar
  15. 15.
    Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015).  https://doi.org/10.1007/s11263-015-0816-yMathSciNetCrossRefGoogle Scholar
  16. 16.
    Sari, Y.A., Suciati, N.: Flower classification using combined a* b* color and fractal-based texture feature. Int. J. Hybrid Inf. Technol. 7(2), 357–368 (2014)CrossRefGoogle Scholar
  17. 17.
    Siraj, F., Ekhsan, H.M., Zulkifli, A.N.: Flower image classification modeling using neural network. In: 2014 International Conference on IC3INA, pp. 81–86. IEEE (2014)Google Scholar
  18. 18.
    Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on CVPR, pp. 1–9 (2015)Google Scholar
  19. 19.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on CVPR, pp. 2818–2826 (2016)Google Scholar
  20. 20.
    Xia, X., Xu, C., Nan, B.: Inception-v3 for flower classification. In: 2017 2nd International Conference on ICIVC, pp. 783–787. IEEE (2017)Google Scholar
  21. 21.
    Zawbaa, H.M., Abbass, M., Basha, S.H., Hazman, M., Hassenian, A.E.: An automatic flower classification approach using machine learning algorithms. In: 2014 International Conference on ICACCI, pp. 895–901. IEEE (2014)Google Scholar
  22. 22.
    Zhang, C., Liang, C., Li, L., Liu, J., Huang, Q., Tian, Q.: Fine-grained image classification via low-rank sparse coding with general and class-specific codebooks. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1550–1559 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations