A Framework of Learning and Communication with IoT-Enabled Ecosystem

  • Jay R. BhatnagarEmail author
Part of the Intelligent Systems Reference Library book series (ISRL, volume 174)


Internet of Things or IoT is fast emerging as the ubiquitous data-directed solution for autonomous all-machine networks. In this article we propose an IoT-enabled framework that performs two interlinked data-driven roles—communicating intelligence and intelligent communication. The first role points to harvesting multi-variate data which varies in space-time for knowledge and features whereas the latter role deals with control and inference derived from the sensed data. We integrate these roles in smart architecture and apply it to probe critical problems in domains such as Transport, Energy, Environment and Telecom. The discussion on IoT-enabled system proposes novelties such as digital divide of supply versus demand and workflow; graph-based learning of state-space and formulates energy efficiency of IoT node. The case study for vehicular traffic reveals that IoT-enabled system offers reliable, easy to scale, AI integrated and efficient communication that can complement performance with the existing networks.


IoT network Deep learning Graphical model Mega city Vehicular traffic Energy efficiency Environment Communication theory 



In writing of the chapter gratitude is due to suggestions of the Editors of this volume. This article treats communication theory at graduate level showcasing bits of logic, architecture and switching methods that can be useful in IoT-enabled solution. Sincere thanks are due to Professor R G. Gallager for unmatched insights and inspirational work in data and communication sciences. Author thanks learning in ecosystems over the years with Communication Sciences Institute USC; GCATT, Georgia Tech. and EE & Statistics, UC Riverside. Author sincerely acknowledges the generous help of Er. Ravindra Prakash Bhatnagar in the preparing of manuscript.


  1. 1.
    Sorensen, A., Okata, J. (eds.): Megacities: Urban form, pp. 1–418. Governance and Sustainability, Springer Verlag (2011)Google Scholar
  2. 2.
    Drakakis-Smith, D.: Third world cities: Sustainable urban development, part 3. Basic Needs Hum. Rights, Urban Stud. 34(5–6), 797–823 (1997)Google Scholar
  3. 3.
    Brennan, E., Lo, F.C., Chamie, J., Uitto, J.I., Fuchs, R.: Mega-city Growth and the Future, pp. 1–392. United Nations University Press, Japan (1996)Google Scholar
  4. 4.
    Goodfellow, I., Bengio, Y., Cournville, A., Bach, F.: Deep learning—adaptive computation and machine learning series. MIT Press, Cambridge, Massachusetts (2017)Google Scholar
  5. 5.
    Guo, K., Lu, Y., Gao, H., Cao, R.: Artificial intelligence-based semantic internet of things in a user-centric smart city. Sensors (Basel) 18(5), 1341–1355 (2018)CrossRefGoogle Scholar
  6. 6.
    Nilsson, N.: The quest for artificial intelligence: a history of ideas and achievements. Cambridge University Press, Massachusetts (2009)CrossRefGoogle Scholar
  7. 7.
    Ray, P.P.: A survey on internet of things architectures. Comput. Inf. Sci. J. Sci. Direct 30(3), 291–319 (2018)Google Scholar
  8. 8.
    Mulay, A.: Sustaining Moore’s Law—Uncertainty Leading to Certainty of IoT Revolution. Morgan and Claypool Publishers (2016)Google Scholar
  9. 9.
    Goldsmith, A.: Wireless Communications. Cambridge University Press (2012)Google Scholar
  10. 10.
    Berteskas, D., Gallager, R.G.: Data networks. Pearson Press (1992)Google Scholar
  11. 11.
    Hejazi, H., Rajab, H., Cinkler, T., Lengyel, L.: Survey of platforms for massive IoT. IEEE Proc. in Future of IoT Technologies. Hungary, pp. 1–8 (2018)Google Scholar
  12. 12.
    Pop, M.-D., Proștean, O.: Comparison between smart city approaches in road traffic management. In: Proceeding of 14th International Symposium on Management. Elsevier Procedia of Social Behavioural sciences, vol. 238, pp. 29–36 (2018)CrossRefGoogle Scholar
  13. 13.
    Kanungo, A., Sharma, A., Singhla, C.: Smart traffic lights switching and traffic density calculation using video processing. Proc. of IEEE RAECS 1–5 (2014)Google Scholar
  14. 14.
    Bommes, M., Fazekas, A., Volkenhoff, T., Oeser, M.: Video based intelligent transportation systems—state of the art and future development. Elsevier Procedia Transp. Res. 14, 4495–4504 (2016)CrossRefGoogle Scholar
  15. 15.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press (2010)Google Scholar
  16. 16.
    Gallager, R.G.: Discrete Stochastic Processes. Springer Science Press (1996)Google Scholar
  17. 17.
    Zhu, P., Wen, L., Bian, X., Ling, H., Hu, Q.: Vision Meets Drones: A Challenge, pp. 104–109. Proc.of IEEE CVPR, Salt lake City (2018)Google Scholar
  18. 18.
    Everingham, M., Eslami, S.M.A., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int’l J. Comput. Vis. 111, 98–136 (2015)CrossRefGoogle Scholar
  19. 19.
    Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. Proc. of IEEE CVPR, 248–255 (2009)Google Scholar
  20. 20.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1770 (1997)CrossRefGoogle Scholar
  21. 21.
    Cammarano, A., Petrioli, C., Spenza, D.: Online energy harvesting prediction in environmentally powered wireless sensor networks. IEEE Sens. J. 16(17), 6793–6804 (2016)CrossRefGoogle Scholar
  22. 22.
    Hepsbali, A.: A key review of exergetic analysis and assessment of renewable energy sources for a sustainable future. J. Renew. Sustain. Energy Rev. 593–661 (2008)Google Scholar
  23. 23.
    Cesarini, D., Jelicic, C., Kuri, M.: Experimental validation of energy harvesting-system availability improvement through battery heating. IEEE Sens. J. 17(11), 3497–3506 (2017)CrossRefGoogle Scholar
  24. 24.
    Ammar, A.M.A., Fallah, Y.P., Reynolds, D.: Throughput in an energy harvesting wireless uplink. IEEE Sens. J. 6(18), 2616–2627 (2018)Google Scholar
  25. 25.
    Rajesh, R., Sharma. V., Vishwanath, P.: Information capacity of energy harvesting sensor nodes. Proc. of IEEE ISIT 2363–2367 (2011)Google Scholar
  26. 26.
    Ozel, O., Tutuncuoglu, K., Ulukus, S., Yener, A.: Capacity of the energy harvesting channel with energy arrival information at the receiver. Proc. of IEEE ITW, pp. 332–336 (2014)Google Scholar
  27. 27.
    Shaviv, D., Nguyen, P.-M., Ӧzgür, A.: Capacity of the energy-harvesting channel with a finite battery. IEEE Transac. Inf. Theory 62(11), 6436–6458 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Shannon, C.E.: A mathematical theory of communication. J. Bell Syst. Tech. 27, 379–423 (1948)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Verdu, S., McLaughlin, S.W. (eds.): Information Theory: 50 years of Discovery. IEEE Press, New Jersey (2000)zbMATHGoogle Scholar
  30. 30.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, Wiley press (2006)Google Scholar
  31. 31.
    Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes. 4th ed., Tata McGraw-Hill (2008)Google Scholar
  32. 32.
    Brachman, A.: Simulation comparison of LEACH-based routing protocols for wireless sensor networks. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) Computer Networks. Communications in Computer and Information Science, vol. 370. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  33. 33.
    Uysal-Biyikoglu, E., Prabhakar, B., El Gamal, A.: Energy-efficient packet transmission over a wireless link. IEEE/ACM Trans. Networking 10, 487–499 (2002)CrossRefGoogle Scholar
  34. 34.
    Reed, J.H.: An Introduction to Ultra-Wide Band Communication Systems, Prentice Hall (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Computer Science and EngineeringPresidency UniversityBengaluruIndia

Personalised recommendations