Advertisement

Classification of Mammogram Images Using Radial Basis Function Neural Network

  • Ashraf Osman IbrahimEmail author
  • Ali Ahmed
  • Aleya Abdu
  • Rahma Abd-alaziz
  • Mohamed Alhaj Alobeed
  • Abdulrazak Yahya Saleh
  • Abubakar Elsafi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1073)

Abstract

Recently, computer aided diagnosis and image processing have received considerable attention from a number of researchers. Mammography is the most effective method for exposure of early breast cancer to increase the survival rate. This paper presents the classification method for mammogram Image using Radial Basis Function Network (RBF) technique. This method is focused on features extracted from the breast cancer mammogram image processing algorithms. The actual decision about the presence of the disease is then made by RBF network classifiers. We conducted this study in five stages; collecting images, Region of Interest (ROI), features extracting, classification and end with testing and evaluating. The experimental results shown the classification accuracy results of the RBF neural network 79.166% while MLP algorithm was 54.1667%, that illustrate the capability of the RBF network to obtain better classification accuracy results.

Keywords

Artificial Neural Networks Radial Basis Function Mammogram Breast Cancer 

References

  1. 1.
    de Oliveira Martins, L., dos Santos, A.M., Silva, A.C., Paiva, A.C.: Classification of normal, benign and malignant tissues using co-occurrence matrix and Bayesian neural network in mammographic images. Paper Presented at the 2006 Ninth Brazilian Symposium on Neural Networks (SBRN 2006) (2006)Google Scholar
  2. 2.
    Loka, V.R.D., Putheti, S.: Classification of normal, benign and malignant tissues using fuzzy texton and support vector machine in mammographic images. Int. J. Comput. Appl. 82(15), 36–39 (2013)Google Scholar
  3. 3.
    Punitha, S., Ravi, S., Devi, M.A., Vaishnavi, J.: Breast cancer detection using classification techniques in digital mammography: international science press. IJCTA 9(7), 3123–3134 (2016)Google Scholar
  4. 4.
    Tang, J., Rangayyan, R.M., Xu, J., El Naqa, I., Yang, Y.: Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans. Inform. Technol. Biomed. 13(2), 236–251 (2009)CrossRefGoogle Scholar
  5. 5.
    Smith, R.A., Cokkinides, V., Eyre, H.J.: American cancer society guidelines for the early detection of cancer. CA: Cancer J. Clin. 56(1), 11–25 (2006)Google Scholar
  6. 6.
    Jaffar, A.: Hybrid texture based classification of breast mammograms using adaboost classifier. Int. J. Adv. Comput. Sci. Appl. 8(5), 321–327 (2017)Google Scholar
  7. 7.
    Choi, J.P., Han, T.H., Park, R.W.: A hybrid Bayesian network model for predicting breast cancer prognosis. J. Korean Soc. Med. Inform. 15(1), 49–57 (2009)CrossRefGoogle Scholar
  8. 8.
    Islam, M.J., Ahmadi, M., Sid-Ahmed, M.A.: An efficient automatic mass classification method in digitized mammograms using artificial neural network. arXiv preprint arXiv:1007.5129 (2010)
  9. 9.
    Pratiwi, M., Harefa, J., Nanda, S.: Mammograms classification using gray-level co-occurrence matrix and radial basis function neural network. Proc. Comput. Sci. 59, 83–91 (2015)CrossRefGoogle Scholar
  10. 10.
    Lee, Y.J., Mangasarian, O.L., Wolberg, W.H.: Survival-time classification of breast cancer patients (2008). http://www.cs.wisc.edu/dmi/annrev/rev0601/uj.ppt. [cited 2017]
  11. 11.
    Vani, G., Savitha, R., Sundararajan, N.: Classification of abnormalities in digitized mammograms using extreme learning machine. Paper Presented at the 2010 11th International Conference on Control Automation Robotics and Vision (2010)Google Scholar
  12. 12.
    Marcano-Cedeño, A., Quintanilla-Domínguez, J., Andina, D.: WBCD breast cancer database classification applying artificial metaplasticity neural network. Expert Syst. Appl. 38(8), 9573–9579 (2011)CrossRefGoogle Scholar
  13. 13.
    Mavroforakis, M.E, Georgiou, H.V, Cavouras, D., Dimitropoulos, N., Theodoridis, S.: Mammographic mass classification using textural features and descriptive diagnostic data. Paper Presented at the 2002 14th International Conference on Digital Signal Processing Proceedings, DSP 2002 (Cat. No. 02TH8628) (2002)Google Scholar
  14. 14.
    Ibrahim, A.O., Shamsuddin, S.M., yahya Saleh, A., Abdelmaboud, A., Ali, A.: Intelligent multi-objective classifier for breast cancer diagnosis based on multilayer perceptron neural network and differential evolution. In: 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), pp. 422–427. IEEE (2015)Google Scholar
  15. 15.
    Touahri, R., AzizI, N., Hammami, N.E., Aldwairi, M., Benaida, F.: Automated breast tumor diagnosis using local binary patterns (LBP) based on deep learning classification. Paper Presented at the 2019 International Conference on Computer and Information Sciences (ICCIS) (2019)Google Scholar
  16. 16.
    Mehre, S.A., Dhara, A.K., Garg, M., Kalra, N., Khandelwal, N., Mukhopadhyay, S.: Content-based image retrieval system for pulmonary nodules using optimal feature sets and class membership-based retrieval. J. Digit. Imaging 32(3), 362–385 (2019)CrossRefGoogle Scholar
  17. 17.
    Rasti, R., Teshnehlab, M., Phung, S.L.: Breast cancer diagnosis in DCE-MRI using mixture ensemble of convolutional neural networks. Pattern Recogn. 72, 381–390 (2017)CrossRefGoogle Scholar
  18. 18.
    Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Program. Biomed. 127, 248–257 (2016)CrossRefGoogle Scholar
  19. 19.
    Mohamed, A.A., Berg, W.A., Peng, H., Luo, Y., Jankowitz, R.C., Wu, S.: A deep learning method for classifying mammographic breast density categories. Med. Phys. 45(1), 314–321 (2018)CrossRefGoogle Scholar
  20. 20.
    Yi, P.H., Lin, A., Wei, J., Yu, A.C., Sair, H.I., Hui, F.K., Harvey, S.C.: Deep-learning-based semantic labeling for 2d mammography and comparison of complexity for machine learning tasks. J. Digit. Imaging 32(4), 565–570 (2019)CrossRefGoogle Scholar
  21. 21.
    Ibrahim, A.O., Shamsuddin, S.M., Abraham, A., Qasem, S.N.: Adaptive memetic method of multi-objective genetic evolutionary algorithm for backpropagation neural network. Neural Comput. Appl. 31(9), 4945–4962 (2019)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    J. Suckling, J. Parker, D. Dance, S. Astley, I. Hutt, C. Boggis, et al.: The mammographic image analysis society digital mammogram database. In: Excerpt Medical International Congress Series, pp. 375–378 (1994). http://peipa.essex.ac.uk/info/mias.html
  24. 24.
    Rajini, N.H., Bhavani, R.: Classification of MRI brain images using k-nearest neighbor and artificial neural network. Paper Presented at the 2011 International Conference on Recent Trends in Information Technology (ICRTIT) (2011)Google Scholar
  25. 25.
    Kumar, G.J., Kumar, G.V.: Biological early brain cancer detection using artificial neural networks. Int. J. Comput. Sci. Eng. (IJCSE) 02(08), 2721–2725 (2010)Google Scholar
  26. 26.
    Mohd, A.I., Mohamed Alhaj, A., Shahreen, K., Ashraf, O.I., Anik, H.A., Saima, A.L., Ali, A.: An enhancement of multi classifiers voting method for mammogram image based on image histogram equalization (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ashraf Osman Ibrahim
    • 1
    • 2
    • 3
    Email author
  • Ali Ahmed
    • 4
  • Aleya Abdu
    • 3
  • Rahma Abd-alaziz
    • 3
  • Mohamed Alhaj Alobeed
    • 5
  • Abdulrazak Yahya Saleh
    • 6
  • Abubakar Elsafi
    • 7
  1. 1.Faculty of Computer Science and Information TechnologyAlzaiem Alazhari UniversityKhartoum NorthSudan
  2. 2.Arab Open UniversityKhartoumSudan
  3. 3.Faculty of Computer ScienceFuture UniversityKhartoumSudan
  4. 4.Department of Computer Science, Faculty of Computing and Information TechnologyKing Abdulaziz UniversityRabighSaudi Arabia
  5. 5.Information Technology DepartmentShendi UniversityShendiSudan
  6. 6.FSKPM FacultyUniversity Malaysia Sarawak (UNIMAS)Kota SamarahanMalaysia
  7. 7.Software Engineering Department, College of Computer Science and EngineeringUniversity of JeddahJeddahSaudi Arabia

Personalised recommendations