Coldest Measurable Temperature

  • Abhay Shastry
Part of the Springer Theses book series (Springer Theses)


In Chap.  2 we found that the second law of thermodynamics imposes strong restrictions on what can be considered a meaningful thermodynamic measurement. We ask a question motivated by the third law of thermodynamics: What is the coldest possible temperature one can measure in a nonequilibrium quantum system? We have discussed how to measure temperature and voltage in the previous chapter. Most importantly, we realized that temperature and voltage have to be measured simultaneously to ensure uniqueness of the measurement. Here we show that absolute zero cannot be reached for a nonequilibrium quantum system, but arbitrarily low temperatures are, in principle, possible. In quantum coherent conductors, low temperatures result locally when there is destructive interference of “hot” electrons.


Third law of thermodynamics Mean local spectrum Mean local energy Mean local occupancy Maximal local coupling Sommerfeld series Riemann zeta function Destructive interference Transmission node Uniqueness Second law of thermodynamics pi-conjugated system Rules of covalence Benzene Pyrene Coronene 


  1. 1.
  2. 2.
    J.P. Bergfield, S.M. Story, R.C. Stafford, C.A. Stafford, ACS Nano 7(5), 4429 (2013). CrossRefGoogle Scholar
  3. 3.
    J. Meair, J.P. Bergfield, C.A. Stafford, P. Jacquod, Phys. Rev. B 90, 035407 (2014). ADSCrossRefGoogle Scholar
  4. 4.
  5. 5.
    J.P. Bergfield, M.A. Ratner, C.A. Stafford, M. Di Ventra, Phys. Rev. B 91, 125407 (2015). ADSCrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
    J.K. Viljas, J.C. Cuevas, F. Pauly, M. Häfner, Phys. Rev. B 72(24), 241201(R) (2005)Google Scholar
  9. 9.
    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  12. 12.
    J. Heurich, J.C. Cuevas, W. Wenzel, G. Schön, Phys. Rev. Lett. 88, 256803 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    J.P. Bergfield, C.A. Stafford, Phys. Rev. B 79(24), 245125 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Bergfield, M.A. Solis, C.A. Stafford, ACS Nano 4(9), 5314 (2010)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Y. Dubi, M. Di Ventra, Nano Lett. 9(1), 97 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Y.J. Yu, M.Y. Han, S. Berciaud, A.B. Georgescu, T.F. Heinz, L.E. Brus, K.S. Kim, P. Kim, Appl. Phys. Lett. 99(18), 183105 (2011). ADSCrossRefGoogle Scholar
  18. 18.
    K. Kim, J. Chung, G. Hwang, O. Kwon, J.S. Lee, ACS Nano 5(11), 8700 (2011). PMID: 21999681CrossRefGoogle Scholar
  19. 19.
    K. Kim, W. Jeong, W. Lee, P. Reddy, ACS Nano 6(5), 4248 (2012). PMID: 22530657CrossRefGoogle Scholar
  20. 20.
    F. Menges, H. Riel, A. Stemmer, B. Gotsmann, Nano Lett. 12(2), 596 (2012). PMID: 22214277ADSCrossRefGoogle Scholar
  21. 21.
    A. Caso, L. Arrachea, G.S. Lozano, Phys. Rev. B 81(4), 041301 (2010). ADSCrossRefGoogle Scholar
  22. 22.
  23. 23.
    H. Song, Y. Kim, Y.H. Jang, H. Jeong, M.A. Reed, T. Lee, Nature 462(7276), 1039 (2009). ADSCrossRefGoogle Scholar
  24. 24.
    L.G.C. Rego, G. Kirczenow, Phys. Rev. Lett. 81(1), 232 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    L.G.C. Rego, G. Kirczenow, Phys. Rev. B 59(20), 13080 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    C.J. Chen, Introduction to Scanning Tunneling Microscopy, 2nd edn. (Oxford University Press, New York, 1993)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abhay Shastry
    • 1
  1. 1.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations