On Recent Numerical Methods for Steady Periodic Water Waves

  • Dominic AmannEmail author
Part of the Tutorials, Schools, and Workshops in the Mathematical Sciences book series (TSWMS)


The study of steady periodic water waves, analytically as well as numerically, is a very active field of research. We describe some of the more recent numerical approaches to computing these waves numerically as well as the corresponding results. The focus of this work is on the different formulations as well as their limitations and similarities.


Steady water waves Numerical methods Numerical continuation Nonlocal formulation 



The author was supported by the project Computation of large amplitude water waves (P 27755-N25), funded by the Austrian Science Fund (FWF). The author would like to thank the reviewers for their suggestions and comments, as those led to a more coherent and precise manuscript.


  1. 1.
    M. Ablowitz, A.S. Fokas, Z. Musslimani, On a new non-local formulation of water waves. J. Fluid Mech. 562, 313–343 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Amann, K. Kalimeris, Numerical approximation of water waves through a deterministic algorithm. J. Math. Fluid Mech. 20, 1815–1833 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    D. Amann, K. Kalimeris, A numerical continuation approach for computing water waves of large wave height. Eur. J. Mech. B/Fluids 67, 314–328 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A.C. Ashton, A. Fokas, A non-local formulation of rotational water waves. J. Fluid Mech. 689, 129–148 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    W. Choi, Nonlinear surface waves interacting with a linear shear current. Mat. Comput. Simul. 80(1), 29–36 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, vol. 81 (SIAM, Philadelphia, 2011)CrossRefGoogle Scholar
  7. 7.
    A. Constantin, On the modelling of equatorial waves. Geophys. Res. Lett. 39(5), L05602 (2012)Google Scholar
  8. 8.
    A. Constantin, W. Strauss, Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57(4), 481–527 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Constantin, K. Kalimeris, O. Scherzer, Approximations of steady periodic water waves in flows with constant vorticity. Nonlinear Anal. Real World Appl. 25, 276–306 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A.T. Da Silva, D. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195, 281–302 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    B. Deconinick, K. Oliveras, The instability of periodic surface gravity waves. J. Fluid Mech. 675, 141–167 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. J. Math. Pures Appl. 13, 217-291 (1934)zbMATHGoogle Scholar
  13. 13.
    M. Ehrnström, J. Escher, E. Wahlén, Steady water waves with multiple critical layers. SIAM J. Math. Anal. 43(3), 1436–1456 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Ehrnström, J. Escher, G. Villari, Steady water waves with multiple critical layers: interior dynamics. J. Math. Fluid Mech. 14(3), 407–419 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A.S. Fokas, A. Nachbin, Water waves over a variable bottom: a non-local formulation and conformal mappings. J. Fluid Mech. 695, 288–309 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Henry, Large amplitude steady periodic waves for fixed-depth rotational flows. Commun. Partial Differ. Equ. 38(6), 1015–1037 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    V.M. Hur, Shallow water models with constant vorticity. Eur. J. Mech. B/Fluids 73, 170–179 (2019)MathSciNetCrossRefGoogle Scholar
  18. 18.
    K. Kalimeris, Asymptotic expansions for steady periodic water waves in flows with constant vorticity. Nonlinear Anal. Real World Appl. 37, 182–212 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    P. Karageorgis, Dispersion relation for water waves with non-constant vorticity. Eur. J. Mech. B/Fluids 34, 7–12 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Ko, W. Strauss, Effect of vorticity on steady water waves. J. Fluid Mech. 608, 197–215 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Ko, W. Strauss, Large-amplitude steady rotational water waves. Eur. J. Mech. B/Fluids 27(2), 96 – 109 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Longuet-Higgins, M. Tanaka, On the crest instabilities of steep surface waves. J. Fluid Mech. 336, 51–68 (1997)MathSciNetCrossRefGoogle Scholar
  23. 23.
    D.V. Maklakov, Almost-highest gravity waves on water of finite depth. Eur. J. Appl. Math. 13(1), 67–93 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    P.A. Milewski, J.-M. Vanden-Broeck, Z. Wang, Dynamics of steep two-dimensional gravity–capillary solitary waves. J. Fluid Mech. 664, 466–477 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Oliveras, V. Vasan, A new equation describing travelling water waves. J. Fluid Mech. 717, 514–522 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    K.L. Oliveras, V. Vasan, B. Deconinck, D. Henderson, Recovering the water-wave profile from pressure measurements. SIAM J. Appl. Math. 72(3), 897–918 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Quirchmayr, On irrotational flows beneath periodic traveling equatorial waves. J. Math. Fluid Mech. 19(2), 283–304 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    R. Ribeiro, P.A. Milewski, A. Nachbin, Flow structure beneath rotational water waves with stagnation points. J. Fluid Mech. 812, 792–814 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    L. Schwartz, J. Fenton, Strongly nonlinear waves. Annu. Rev. Fluid Mech. 14(1), 39–60 (1982)MathSciNetCrossRefGoogle Scholar
  30. 30.
    J.A. Simmen, P. Saffman, Steady deep-water waves on a linear shear current. Stud. Appl. Math. 73(1), 35–57 (1985)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Souli, J. Zolesio, A. Ouahsine, Shape optimization for non-smooth geometry in two dimensions. Comput. Methods Appl. Mech. Eng. 188(1), 109–119 (2000)MathSciNetCrossRefGoogle Scholar
  32. 32.
    W. Strauss, Steady water waves. Bull. Am. Math. Soc. 47(4), 671–694 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    J.F. Toland, On the existence of a wave of greatest height and stokes’s conjecture. Proc. R. Soc. Lond. A Math. Phys. Sci. 363(1715), 469–485 (1978)MathSciNetCrossRefGoogle Scholar
  34. 34.
    V. Vasan, K. Oliveras, Pressure beneath a traveling wave with constant vorticity. Discrete Contin. Dynam. Syst. 34, 3219–3239 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    E. Wahlén, Steady water waves with a critical layer. J. Differ. Equ. 246(6), 2468–2483 (2009)MathSciNetCrossRefGoogle Scholar
  36. 36.
    V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied MathematicsLinzAustria

Personalised recommendations