Advertisement

Global Diffeomorphism of the Lagrangian Flow-map for a Pollard-like Internal Water Wave

  • Mateusz KluczekEmail author
  • Adrián Rodríguez-Sanjurjo
Chapter
Part of the Tutorials, Schools, and Workshops in the Mathematical Sciences book series (TSWMS)

Abstract

In this article we provide an overview of a rigorous justification of the global validity of the fluid motion described by a new exact and explicit solution prescribed in terms of Lagrangian variables of the nonlinear geophysical equations. More precisely, the three-dimensional Lagrangian flow-map describing this exact and explicit solution is proven to be a global diffeomorphism from the labelling domain into the fluid domain. Then, the flow motion is shown to be dynamically possible.

Keywords

Global diffeomorphism Geophysical internal water waves Exact and explicit solution 

Mathematics Subject Classification (2000)

35A16 35C05 35Q86 35Q35 

Notes

Acknowledgements

The authors acknowledge the support of the Erwin Schrödinger International Institute for Mathematics and Physics (ESI) during the program “Mathematical Aspects of Physical Oceanography” and the support of the Science Foundation Ireland (SFI) research grant 13/CDA/2117.

References

  1. 1.
    A. Bennett, Lagrangian Fluid Dynamics (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  2. 2.
    J.P. Boyd, Dynamics of the Equatorial Ocean (Springer, Berlin, 2018)CrossRefGoogle Scholar
  3. 3.
    A. Constantin, On the deep water wave motion. J. Phys. A: Math. Gen. 34, 1405–1417 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Constantin, Edge waves along a sloping bed. J. Phys. A: Math. Gen 34, 9723–9731 (2001)CrossRefGoogle Scholar
  5. 5.
    A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, vol. 81 (SIAM, Philadelphia, 2011)CrossRefGoogle Scholar
  6. 6.
    A. Constantin, An exact solution for Equatorially trapped waves. J. Geophys. Res. 117, 1–8 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Constantin, Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Constantin, S.G. Monismith, Gerstner waves in the presence of mean currents and rotation. J. Fluid. Mech. 820, 511–528 (2017).  https://doi.org/10.1017/jfm.2017.223 MathSciNetCrossRefGoogle Scholar
  10. 10.
    B. Cushman-Roisin, J.M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101 (Academic Press, London, 2011)zbMATHGoogle Scholar
  11. 11.
    F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)CrossRefGoogle Scholar
  12. 12.
    W. Froude, On the rolling of ships. Trans. Inst. Naval Arch. 2, 45–62 (1862)Google Scholar
  13. 13.
    D. Henry, On Gerstner’s water wave. J. Nonlinear Math. Phys. 15, 87–95 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Henry, An exact solution for Equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 190–195 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Henry, Equatorially trapped nonlinear water waves in a β-plane approximation with centripetal forces. J. Fluid Mech. 804 (2016).  https://doi.org/10.1017/jfm.2016.544
  16. 16.
    D. Henry, A modified equatorial β-plane approximation modelling nonlinear wave-current interactions. J. Differ. Equ. 263, 2554–2566 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    D. Henry, On three-dimensional Gerstner-like equatorial water waves. Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci. 376, 1–16 (2017)Google Scholar
  18. 18.
    R.A. Horn, C.R. Johnson. Matrix Analysis (Cambridge University Press, Cambridge, 1985), p. 346CrossRefGoogle Scholar
  19. 19.
    H.-C Hsu, An exact solution for nonlinear internal Equatorial waves in the f-plane approximation. J. Math. Fluid Mech. 16, 463–471 (2014)Google Scholar
  20. 20.
    D. Ionescu-Kruse, An exact solution for geophysical edge waves in the f-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows. Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci. 376, 1–21 (2017)MathSciNetGoogle Scholar
  22. 22.
    R.S. Johnson, Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography. Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci. 376, 1–19 (2017)Google Scholar
  23. 23.
    M. Kluczek, Exact and explicit internal Equatorially-trapped water waves with underlying currents. J. Math. Fluid Mech. 10, 305–314 (2016)MathSciNetzbMATHGoogle Scholar
  24. 24.
    M. Kluczek, Exact Pollard-like internal water waves. J. Nonlinear Math. Phys. 26, 133–146 (2019)MathSciNetCrossRefGoogle Scholar
  25. 25.
    W. Kulpa, Poincare and domain invariance theorem. Acta Univ. Carolin. Math. Phys. 39, 127–136 (1998)MathSciNetzbMATHGoogle Scholar
  26. 26.
    S. Monismith, H. Nepf, E. Cowen, L. Thais, J. Magnaudet, Laboratory observations of mean flows under surface gravity waves. J. Fluid Mech. 573, 131–147 (2007)CrossRefGoogle Scholar
  27. 27.
    A.V. Matioc, Exact geophysical waves in stratified fluids. Appl. Anal. 92, 2254–2261 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    R.T. Pollard, Surface waves with rotation: an exact solution. J. Geophys. Res 75, 5895–5898 (1970)CrossRefGoogle Scholar
  29. 29.
    W.J.M Rankine, On the exact form of waves near the surface of deep water. Philos. Trans. R. Soc. Lond. 153, 127–138 (1863)Google Scholar
  30. 30.
    F. Reech, Sur la théorie des ondes liquides périodiques. C.R. Acad. Sci. Paris 68, 1099–1101 (1869)Google Scholar
  31. 31.
    A. Rodríguez-Sanjurjo, Global diffeomorphism of the Lagrangian flow-map for Equatorially trapped internal water waves. Nonlinear Anal. 149, 156–164 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Rodríguez-Sanjurjo, Global diffeomorphism of the Lagrangian flow-map for Pollard-like solutions. Ann. Mat. Pura Appl. 197, 1787–1797 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    E.H. Rothe, Introduction to Various Aspects of Degree Theory in Banach Spaces. Mathematical Surveys and Monographs, vol. 23 (American Mathematical Society, Providence, 1986)Google Scholar
  34. 34.
    S. Sastre-Gomez, Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves. Nonlinear Anal. 125, 725–731 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    R. Stuhlmeier, Internal Gerstner waves: applications to dead water. Appl. Anal. 93, 1451–1457 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity College CorkCorkIreland

Personalised recommendations