Advertisement

Interactions Between the Plant Endomembranes and the Cytoskeleton

  • Pengfei Cao
  • Federica BrandizziEmail author
Chapter
Part of the Plant Cell Monographs book series (CELLMONO, volume 24)

Abstract

In eukaryotic cells, the endomembrane system comprises the endoplasmic reticulum (ER), the vacuole, and several other types of membrane-enclosed compartments that share membrane origins and communicate with each other. These endomembrane compartments are indispensable for the cell and together exert essential cellular functions, such as intracellular membrane transport and secretion. In plant cells, the endomembrane compartments interact extensively with the cytoskeleton system, mainly the actin cytoskeleton, in concert with their dynamic biogenesis and movement. Recent studies have characterized conserved mechanisms and a set of plant-specific proteins that are involved in the endomembrane–cytoskeleton interactions. In this chapter, we review mechanisms of the interactions between plant cytoskeleton and the major endomembrane compartments in a broad context of organelle morphogenesis, dynamics, and cellular functions.

Notes

Acknowledgments

We thank Dr. Sang-Jin Kim for helpful discussion. This work was primarily supported by NSF MCB1714561 and AgBioResearch MICL02598 to FB. We acknowledge infrastructure support by the Chemical Sciences, Geosciences and Biosciences Division, Office of BES, Office of Science, US DOE DE-FG02-91ER20021.

References

  1. Akkerman M, Overdijk EJR, Schel JHN, Emons AMC, Ketelaar T (2011) Golgi body motility in the plant cell cortex correlates with actin cytoskeleton organization. Plant Cell Physiol 52:1844–1855PubMedCrossRefGoogle Scholar
  2. Ambrose C, Ruan Y, Gardiner J, Tamblyn LM, Catching A, Kirik V, Marc J, Overall R, Wasteneys GO (2013) CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev Cell 24:649–659PubMedCrossRefGoogle Scholar
  3. Angelos E, Ruberti C, Kim SJ, Brandizzi F (2017) Maintaining the factory: the roles of the unfolded protein response in cellular homeostasis in plants. Plant J 90:671–682PubMedPubMedCentralCrossRefGoogle Scholar
  4. Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008) Myosin XI-K is required for rapid trafficking of Golgi stacks, peroxisomes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146:1098–1108PubMedPubMedCentralCrossRefGoogle Scholar
  5. Avisar D, Abu-Abied M, Belausov E, Sadot E (2012) Myosin XIK is a major player in cytoplasm dynamics and is regulated by two amino acids in its tail. J Exp Bot 63:241–249PubMedCrossRefGoogle Scholar
  6. Baluska F, Hlavacka A, Samaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant Physiol 130:422–431PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barbosa AD, Savage DB, Siniossoglou S (2015) Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr Opin Cell Biol 35:91–97PubMedCrossRefGoogle Scholar
  8. Bashline L, Li SD, Gu Y (2014) The trafficking of the cellulose synthase complex in higher plants. Ann Bot 114:1059–1067PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bayer EM, Sparkes I, Vanneste S, Rosado A (2017) From shaping organelles to signalling platforms: the emerging functions of plant ER-PM contact sites. Curr Opin Plant Biol 40:89–96PubMedCrossRefGoogle Scholar
  10. Beck M, Zhou J, Faulkner C, MacLean D, Robatzek S (2012) Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell 24:4205–4219PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bezanilla M, Gladfelter AS, Kovar DR, Lee WL (2015) Cytoskeletal dynamics: a view from the membrane. J Cell Biol 209:329–337PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bodman JAR, Yang Y, Logan MR, Eitzen G (2015) Yeast translation elongation factor-1A binds vacuole-localized Rho1p to facilitate membrane integrity through F-actin remodeling. J Biol Chem 290:4705–4716PubMedPubMedCentralCrossRefGoogle Scholar
  13. Boevink P, SantaCruz S, Oparka KJ, Hawes C (1996a) Virus-mediated delivery of the green fluorescent protein to the endoplasmic reticulum of tobacco cells. Mol Biol Cell 7:426–426Google Scholar
  14. Boevink P, SantaCruz S, Hawes C, Harris N, Oparka KJ (1996b) Virus-mediated delivery of the green fluorescent protein to the endoplasmic reticulum of plant cells. Plant J 10:935–941CrossRefGoogle Scholar
  15. Boevink P, Oparka K, Cruz SS, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447PubMedCrossRefGoogle Scholar
  16. Bola B, Allan V (2009) How and why does the endoplasmic reticulum move? Biochem Soc Trans 37:961–965PubMedCrossRefGoogle Scholar
  17. Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14:1293–1309PubMedPubMedCentralCrossRefGoogle Scholar
  18. Breeze E, Dzimitrowicz N, Kriechbaumer V, Brooks R, Botchway SW, Brady JP, Hawes C, Dixon AM, Schnell JR, Fricker MD, Frigerio L (2016) A C-terminal amphipathic helix is necessary for the in vivo tubule-shaping function of a plant reticulon. Proc Natl Acad Sci USA 113:10902–10907PubMedCrossRefGoogle Scholar
  19. Breuer D, Nowak J, Ivakov A, Somssich M, Persson S, Nikoloski Z (2017) System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells. Proc Natl Acad Sci USA 114:E5741–E5749PubMedCrossRefGoogle Scholar
  20. Brunton VG, MacPherson IRJ, Frame MC (2004) Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim Biophys Acta 1692:121–144PubMedCrossRefGoogle Scholar
  21. Cai G, Parrotta L, Cresti M (2015) Organelle trafficking, the cytoskeleton, and pollen tube growth. J Integr Plant Biol 57:63–78PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cao P, Renna L, Stefano G, Brandizzi F (2016) SYP73 anchors the ER to the actin cytoskeleton for maintenance of ER integrity and streaming in Arabidopsis. Curr Biol 26:3245–3254PubMedCrossRefGoogle Scholar
  23. Caplan JL, Kumar AS, Park E, Padmanabhan MS, Hoban K, Modla S, Czymmek K, Dinesh-Kumar SP (2015) Chloroplast stromules function during innate immunity. Dev Cell 34:45–57PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chang CL, Chen YJ, Quintanilla CG, Hsieh TS, Liou J (2018) EB1 binding restricts STIM1 translocation to ER-PM junctions and regulates store-operated Ca2+ entry. J Cell Biol 217:2047–2058PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen J, Stefano G, Brandizzi F, Zheng HQ (2011) Arabidopsis RHD3 mediates the generation of the tubular ER network and is required for Golgi distribution and motility in plant cells. J Cell Sci 124:2241–2252PubMedCrossRefGoogle Scholar
  26. Chen SL, Novick P, Ferro-Novick S (2012) ER network formation requires a balance of the dynamin-like GTPase Sey1p and the Lunapark family member Lnp1p. Nat Cell Biol 14:707–716PubMedPubMedCentralCrossRefGoogle Scholar
  27. Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Hofte H, Vernhettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–1154PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cui Y, Cao W, He Y, Zhao Q, Wakazaki M, Zhuang X, Gao J, Zeng Y, Gao C, Ding Y (2019) A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. Nat Plants 5:95–105PubMedCrossRefGoogle Scholar
  29. Day B, Henty JL, Porter KJ, Staiger CJ (2011) The pathogen-actin connection: a platform for defense signaling in plants. Annu Rev Phytopathol 49:483–506PubMedCrossRefGoogle Scholar
  30. Deeks MJ, Calcutt JR, Ingle EK, Hawkins TJ, Chapman S, Richardson AC, Mentlak DA, Dixon MR, Cartwright F, Smertenko AP (2012) A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr Biol 22:1595–1600PubMedCrossRefGoogle Scholar
  31. del Dedo JE, Idrissi F-Z, Fernandez-Golbano IM, Garcia P, Rebollo E, Krzyzanowski MK, Grötsch H, Geli MI (2017) ORP-mediated ER contact with endocytic sites facilitates actin polymerization. Dev. Cell 43:588–602.e6Google Scholar
  32. Dhonukshe P, Mathur J, Hulskamp M, Gadella TWJ (2005) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3:11PubMedPubMedCentralCrossRefGoogle Scholar
  33. Eisinger W, Ehrhardt D, Briggs W (2012) Microtubules are essential for guard-cell function in Vicia and Arabidopsis. Mol Plant 5:601–610PubMedCrossRefGoogle Scholar
  34. Eitzen G (2003) Actin remodeling to facilitate membrane fusion. Biochim Biophys Acta 1641:175–181PubMedCrossRefGoogle Scholar
  35. Eitzen G, Thorngren N, Wickner W (2001) Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking. EMBO J 20:5650–5656PubMedPubMedCentralCrossRefGoogle Scholar
  36. Eitzen G, Wang L, Thorngren N, Wickner W (2002) Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 158:669–679PubMedPubMedCentralCrossRefGoogle Scholar
  37. English AR, Voeltz GK (2013) Rab10 GTPase regulates ER dynamics and morphology. Nat Cell Biol 15:169–178PubMedCrossRefGoogle Scholar
  38. Feeney M, Kittelmann M, Menassa R, Hawes C, Frigerio L (2018) Protein storage vacuoles originate from remodeled preexisting vacuoles in Arabidopsis thaliana. Plant Physiol 177:241–254PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fehrenbacher KL, Davis D, Wu M, Boldogh I, Pon LA (2002) Endoplasmic reticulum dynamics, inheritance, and cytoskeletal interactions in budding yeast. Mol Biol Cell 13:854–865PubMedPubMedCentralCrossRefGoogle Scholar
  40. Feiguelman G, Fu Y, Yalovsky S (2018) ROP GTPases structure-function and signaling pathways. Plant Physiol 176:57–79PubMedCrossRefGoogle Scholar
  41. Friml J (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol 89:231–235PubMedCrossRefGoogle Scholar
  42. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809PubMedCrossRefGoogle Scholar
  43. Fu Y (2015) The cytoskeleton in the pollen tube. Curr Opin Plant Biol 28:111–119CrossRefPubMedGoogle Scholar
  44. Gao HB, Metz J, Teanby NA, Ward AD, Botchway SW, Coles B, Pollard MR, Sparkes I (2016) In vivo quantification of peroxisome tethering to chloroplasts in tobacco epidermal cells using optical tweezers. Plant Physiol 170:263–272PubMedCrossRefGoogle Scholar
  45. Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gosavi P, Gleeson PA (2017) The function of the Golgi ribbon structure—an enduring mystery unfolds! BioEssays 39.  https://doi.org/10.1002/bies.201700063 CrossRefGoogle Scholar
  47. Granger E, McNee G, Allan V, Woodman P (2014) The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol 31:20–29PubMedPubMedCentralCrossRefGoogle Scholar
  48. Griffing LR, Gao HBT, Sparkes I (2014) ER network dynamics are differentially controlled by myosins XI-K, XI-C, XI-E, XI-I, XI-1, and XI-2. Front Plant Sci 5:218PubMedPubMedCentralCrossRefGoogle Scholar
  49. Griffing LR, Lin C, Perico C, White RR, Sparkes I (2017) Plant ER geometry and dynamics: biophysical and cytoskeletal control during growth and biotic response. Protoplasma 254:43–56PubMedCrossRefGoogle Scholar
  50. Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin TI, Persson S, Somerville CR (2010) Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA 107:12866–12871PubMedCrossRefGoogle Scholar
  51. Guo YT, Li D, Zhang SW, Yang YR, Liu JJ, Wang XY, Liu C, Milkie DE, Moore RP, Tulu US, Kiehart DP, Hu JJ, Lippincott-Schwartz J, Betzig E, Li D (2018) Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175:1430–1442PubMedCrossRefGoogle Scholar
  52. Gutierrez R, Lindeboom JJ, Paredez AR, Emons AMC, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11:797–U743CrossRefPubMedGoogle Scholar
  53. Hall A, Nobes CD (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond Ser B Biol Sci 355:965–970CrossRefGoogle Scholar
  54. Hamada T, Ueda H, Kawase T, Hara-Nishimura I (2014) Microtubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in Arabidopsis. Plant Physiol 166:1869–U1042PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hanson MR, Hines KM (2018) Stromules: probing formation and function. Plant Physiol 176:128–137PubMedCrossRefGoogle Scholar
  56. Hanson MR, Sattarzadeh A (2011) Stromules: recent insights into a long neglected feature of plastid morphology and function. Plant Physiol 155:1486–1492PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hashimoto-Sugimoto M, Higaki T, Yaeno T, Nagami A, Irie M, Fujimi M, Miyamoto M, Akita K, Negi J, Shirasu K, Hasezawa S, Iba K (2013) A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nat Commun 4:2215PubMedPubMedCentralCrossRefGoogle Scholar
  58. Henne WM, Liou J, Emr SD (2015) Molecular mechanisms of inter-organelle ER-PM contact sites. Curr Opin Cell Biol 35:123–130PubMedCrossRefGoogle Scholar
  59. Higaki T, Kutsuna N, Okubo E, Sano T, Hasezawa S (2006) Actin microfilaments regulate vacuolar structures and dynamics: dual observation of actin microfilaments and vacuolar membrane in living tobacco BY-2 cells. Plant Cell Physiol 47:839–852PubMedCrossRefGoogle Scholar
  60. Ho J, Theg SM (2016) The formation of stromules in vitro from chloroplasts isolated from Nicotiana benthamiana. PLoS One 11:1–14Google Scholar
  61. Hoffmann A, Nebenführ A (2004) Dynamic rearrangements of transvacuolar strands in BY-2 cells imply a role of myosin in remodeling the plant actin cytoskeleton. Protoplasma 224:201–210PubMedCrossRefGoogle Scholar
  62. Hoyer MJ, Chitwood PJ, Ebmeier CC, Striepen JF, Qi RZ, Old WM, Voeltz GK (2018) A novel class of ER membrane proteins regulates ER-associated endosome fission. Cell 175:254–265PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hu JJ, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, Rapoport TA, Blackstone C (2009) A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138:549–561PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hu YF, Na XF, Li JL, Yang LJ, You J, Liang XL, Wang JF, Peng L, Bi YR (2015) Narciclasine, a potential allelochemical, affects subcellular trafficking of auxin transporter proteins and actin cytoskeleton dynamics in Arabidopsis roots. Planta 242:1349–1360PubMedCrossRefGoogle Scholar
  65. Hurlock AK, Roston RL, Wang K, Benning C (2014) Lipid trafficking in plant cells. Traffic 15:915–932PubMedCrossRefGoogle Scholar
  66. Isgandarova S, Jones L, Forsberg D, Loncar A, Dawson J, Tedrick K, Eitzen G (2007) Stimulation of actin polymerization by vacuoles via Cdc42p-dependent signaling. J Biol Chem 282:30466–30475PubMedCrossRefGoogle Scholar
  67. Ivanov R, Brumbarova T, Blum A, Jantke AM, Fink-Straube C, Bauer P (2014) SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON-REGULATED TRANSPORTER1. Plant Cell 26:1294–1307PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jimenez-Lopez JC, Wang X, Kotchoni SO, Huang SJ, Szymanski DB, Staiger CJ (2014) Heterodimeric capping protein from Arabidopsis is a membrane-associated, actin-binding protein. Plant Physiol 166:1312–1328PubMedPubMedCentralCrossRefGoogle Scholar
  69. Joensuu M, Belevich I, Ramo O, Nevzorov I, Vihinen H, Puhka M, Witkos TM, Lowe M, Vartiainen MK, Jokitalo E (2014) ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays. Mol Biol Cell 25:1111–1126PubMedPubMedCentralCrossRefGoogle Scholar
  70. Jones L, Tedrick K, Baier A, Logan MR, Eitzen G (2010) Cdc42p is activated during vacuole membrane fusion in a sterol-dependent subreaction of priming. J Biol Chem 285:4298–4306PubMedCrossRefGoogle Scholar
  71. Kang YS, Jelenska J, Cecchini NM, Li YJ, Lee MW, Kovar DR, Greenberg JT (2014) HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Path 10:1–10CrossRefGoogle Scholar
  72. Ketelaar T, Voss C, Dimmock SA, Thumm M, Hussey PJ (2004) Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett 567:302–306PubMedCrossRefGoogle Scholar
  73. Kim H, Park M, Kim SJ, Hwang I (2005) Actin filaments play a critical role in vacuolar trafficking at the Golgi complex in plant cells. Plant Cell 17:888–902PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J (2006) Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–3181PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kong ZS, Ioki M, Braybrook S, Li SD, Ye ZH, Lee YRJ, Hotta T, Chang A, Tian J, Wang GD, Liu B (2015) Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol Plant 8:1011–1023PubMedCrossRefGoogle Scholar
  76. Kriechbaumer V, Botchway SW, Slade SE, Knox K, Frigerio L, Oparka K, Hawes C (2015) Reticulomics: protein-protein interaction studies with two plasmodesmata-localized reticulon family proteins identify binding partners enriched at plasmodesmata, endoplasmic reticulum, and the plasma membrane. Plant Physiol 169:1933–1945PubMedPubMedCentralGoogle Scholar
  77. Kriechbaumer V, Breeze E, Pain C, Tolmie F, Frigerio L, Hawes C (2018) Arabidopsis Lunapark proteins are involved in ER cisternae formation. New Phytol 219:990–1004PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kruppa AJ, Kendrick-Jones J, Buss F (2016) Myosins, actin and autophagy. Traffic 17:878–890PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kurth EG, Peremyslov VV, Turner HL, Makarova KS, Iranzo J, Mekhedov SL, Koonin EV, Dolja VV (2017) Myosin-driven transport network in plants. Proc Natl Acad Sci USA 114:E1385–E1394PubMedCrossRefGoogle Scholar
  80. Kutsuna N, Kumagai F, Sato MH, Hasezawa S (2003) Three-dimensional reconstruction of tubular structure of vacuolar membrane throughout mitosis in living tobacco cells. Plant Cell Physiol 44:1045–1054PubMedCrossRefGoogle Scholar
  81. Kwok EY, Hanson MR (2003) Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum. Plant J 35:16–26PubMedCrossRefGoogle Scholar
  82. Lee H, Sparkes I, Gattolin S, Dzimitrowicz N, Roberts LM, Hawes C, Frigerio L (2013) An Arabidopsis reticulon and the atlastin homologue RHD3-like2 act together in shaping the tubular endoplasmic reticulum. New Phytol 197:481–489PubMedCrossRefGoogle Scholar
  83. Lee JE, Westrate LM, Wu HX, Page C, Voeltz GK (2016) Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540:139–143PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lee E, Vanneste S, Perez-Sancho J, Benitez-Fuente F, Strelau M, Macho AP, Botella MA, Friml J, Rosado A (2019) Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proc Natl Acad Sci USA 116:1420–1429PubMedCrossRefGoogle Scholar
  85. Lewis JD, Lazarowitz SG (2010) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci USA 107:2491–2496PubMedCrossRefGoogle Scholar
  86. Li P, Day B (2019) Battlefield cytoskeleton: turning the tide on plant immunity. Mol Plant-Microbe Interact 32:25–34PubMedCrossRefGoogle Scholar
  87. Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793:650–663PubMedCrossRefGoogle Scholar
  88. Li LJ, Ren F, Gao XQ, Wei PC, Wang XC (2013) The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in Arabidopsis. Plant Cell Environ 36:484–497PubMedPubMedCentralCrossRefGoogle Scholar
  89. Li JJ, Blanchoin L, Staiger CJ (2015a) Signaling to actin stochastic dynamics. Annu Rev Plant Biol 66:415–440CrossRefPubMedGoogle Scholar
  90. Li JJ, Henty-Ridilla JL, Staiger BH, Day B, Staiger CJ (2015b) Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nat Commun 6:7206PubMedPubMedCentralCrossRefGoogle Scholar
  91. Löfke C, Dünser K, Scheuring D, Kleine-Vehn J (2015) Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. elife 4:e05868PubMedCentralCrossRefGoogle Scholar
  92. Lu L, Lee YRJ, Pan RQ, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lucas JR, Nadeau JA, Sack FD (2006) Microtubule arrays and Arabidopsis stomatal development. J Exp Bot 57:71–79PubMedCrossRefGoogle Scholar
  94. Lv FN, Wang HH, Wang XY, Han LB, Ma YP, Wang S, Feng ZD, Niu XW, Cai CP, Kong ZS, Zhang TZ, Guo WZ (2015) GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation. J Exp Bot 66:1877–1889PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ma B, Qian D, Nan Q, Tan C, An L, Xiang Y (2012) Arabidopsis vacuolar H+-ATPase (V-ATPase) B subunits are involved in actin cytoskeleton remodeling via binding to, bundling, and stabilizing F-actin. J Biol Chem 287:19008–19017PubMedPubMedCentralCrossRefGoogle Scholar
  96. Madison SL, Buchanan ML, Glass JD, McClain TF, Park E, Nebenfuhr A (2015) Class XI myosins move specific organelles in pollen tubes and are required for normal fertility and pollen tube growth in Arabidopsis. Plant Physiol 169:1946–1960PubMedPubMedCentralGoogle Scholar
  97. Mathur J, Mathur N, Kernebeck B, Srinivas BP, Hulskamp M (2003) A novel localization pattern for an EB1-like protein links microtubule dynamics to endomembrane organization. Curr Biol 13:1991–1997PubMedCrossRefGoogle Scholar
  98. Meagher RB, Fechheimer M (2003) The Arabidopsis cytoskeletal genome. Arabidopsis Book 2:e0096PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mehrshahi P, Stefano G, Andaloro JM, Brandizzi F, Froehlich JE, DellaPenna D (2013) Transorganellar complementation redefines the biochemical continuity of endoplasmic reticulum and chloroplasts. Proc Natl Acad Sci USA 110:12126–12131PubMedCrossRefGoogle Scholar
  100. Molines AT, Marion J, Chabout S, Besse L, Dompierre JP, Mouille G, Coquelle FM (2018) EB1 contributes to microtubule bundling and organization, along with root growth, in Arabidopsis thaliana. Biol Open 7:bio030510PubMedPubMedCentralCrossRefGoogle Scholar
  101. Monastyrska I, Rieter E, Klionsky DJ, Reggiori F (2009) Multiple roles of the cytoskeleton in autophagy. Biol Rev 84:431–448PubMedCrossRefGoogle Scholar
  102. Muller O, Johnson DI, Mayer A (2001) Cdc42p functions at the docking stage of yeast vacuole membrane fusion. EMBO J 20:5657–5665PubMedPubMedCentralCrossRefGoogle Scholar
  103. Natesan SKA, Sullivan JA, Gray JC (2009) Myosin XI is required for actin-associated movement of plastid stromules. Mol Plant 2:1262–1272PubMedCrossRefGoogle Scholar
  104. Nebenfuhr A, Dixit R (2018) Kinesins and myosins: molecular motors that coordinate cellular functions in plants. Annu Rev Plant Biol 69:329–361PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nebenfuhr A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1141PubMedPubMedCentralCrossRefGoogle Scholar
  106. Niemes S, Labs M, Scheuring D, Krueger F, Langhans M, Jesenofsky B, Robinson DG, Pimpl P (2010) Sorting of plant vacuolar proteins is initiated in the ER. Plant J 62:601–614PubMedCrossRefGoogle Scholar
  107. Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR, Xu C, Pasolli H, Harvey K, Hess HF, Betzig E, Blackstone CD, Lippincott-Schwartz J (2016) Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354:aaf3928PubMedPubMedCentralCrossRefGoogle Scholar
  108. Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, Overvatn A, Bjorkoy G, Johansen T (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188:253–269PubMedPubMedCentralCrossRefGoogle Scholar
  109. Peremyslov VV, Prokhnevsky AI, Avisar D, Dolja VV (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis. Plant Physiol 146:1109–1116PubMedPubMedCentralCrossRefGoogle Scholar
  110. Peremyslov VV, Prokhnevsky AI, Dolja VV (2010) Class XI myosins are required for development, cell expansion, and F-actin organization in Arabidopsis. Plant Cell 22:1883–1897PubMedPubMedCentralCrossRefGoogle Scholar
  111. Peremyslov VV, Klocko AL, Fowler JE, Dolja VV (2012) Arabidopsis myosin XI-K localizes to the motile endomembrane vesicles associated with F-actin. Front Plant Sci 3:184PubMedPubMedCentralCrossRefGoogle Scholar
  112. Peremyslov VV, Morgun EA, Kurth EG, Makarova KS, Koonin EV, Dolja VV (2013) Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles. Plant Cell 25:3022–3038PubMedPubMedCentralCrossRefGoogle Scholar
  113. Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17:69–82PubMedCrossRefGoogle Scholar
  114. Pollard TD, Goldman RD (2018) Overview of the cytoskeleton from an evolutionary perspective. Cold Spring Harb Perspect Biol 10:a030288PubMedCrossRefGoogle Scholar
  115. Poteryaev D, Squirrell JM, Campbell JM, White JG, Spang A (2005) Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in Caenorhabditis elegans. Mol Biol Cell 16:2139–2153PubMedPubMedCentralCrossRefGoogle Scholar
  116. Pourcher M, Santambrogio M, Thazar N, Thierry AM, Fobis-Loisy I, Miege C, Jaillais Y, Gaude T (2010) Analyses of SORTING NEXINs reveal distinct retromer-subcomplex functions in development and protein sorting in Arabidopsis thaliana. Plant Cell 22:3980–3991PubMedPubMedCentralCrossRefGoogle Scholar
  117. Powers RE, Wang SY, Liu TY, Rapoport TA (2017) Reconstitution of the tubular endoplasmic reticulum network with purified components. Nature 543:257–260PubMedPubMedCentralCrossRefGoogle Scholar
  118. Prinz WA, Grzyb L, Veenhuis M, Kahana JA, Silver PA, Rapoport TA (2000) Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Biol 150:461–474PubMedPubMedCentralCrossRefGoogle Scholar
  119. Prokhnevsky AI, Peremyslov VV, Dolja VV (2008) Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. Proc Natl Acad Sci USA 105:19744–19749PubMedPubMedCentralCrossRefGoogle Scholar
  120. Qi XY, Sun JQ, Zheng HQ (2016) A GTPase-dependent fine ER is required for localized secretion in polarized growth of root hairs. Plant Physiol 171:1996–2007PubMedPubMedCentralCrossRefGoogle Scholar
  121. Quader H (1990) Formation and disintegration of cisternae of the endoplasmic reticulum visualized in live cells by conventional fluorescence and confocal laser scanning microscopy: evidence for the involvement of calcium and the cytoskeleton. Protoplasma 155:166–175CrossRefGoogle Scholar
  122. Quader H, Hofmann A, Schnepf E (1989) Reorganization of the endoplasmic reticulum in epidermal cells of onion bulb scales after cold stress—involvement of cytoskeletal elements. Planta 177:273–280PubMedCrossRefGoogle Scholar
  123. Rademacher EH, Offringa R (2012) Evolutionary adaptations of plant AGC kinases: from light signaling to cell polarity regulation. Front Plant Sci 3:250PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rakusová H, Han H, Valošek P, Friml J (2019) Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls. Plant J 98:1048–1059PubMedPubMedCentralGoogle Scholar
  125. Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F (2018) TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 9:5313PubMedPubMedCentralCrossRefGoogle Scholar
  126. Rowland AA, Chitwood PJ, Phillips MJ, Voeltz GK (2014) ER contact sites define the position and timing of endosome fission. Cell 159:1027–1041PubMedPubMedCentralCrossRefGoogle Scholar
  127. Rui Y, Anderson CT (2016) Functional analysis of cellulose and xyloglucan in the walls of stomatal guard cells of Arabidopsis. Plant Physiol 170:1398–1419PubMedPubMedCentralCrossRefGoogle Scholar
  128. Saravanan RS, Slabaugh E, Singh VR, Lapidus LJ, Haas T, Brandizzi F (2009) The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12. Plant J 58:817–830PubMedCrossRefGoogle Scholar
  129. Schattat M, Barton K, Baudisch B, Klosgen RB, Mathur J (2011) Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics. Plant Physiol 155:1667–1677PubMedPubMedCentralCrossRefGoogle Scholar
  130. Scheuring D, Löfke C, Krüger F, Kittelmann M, Eisa A, Hughes L, Smith RS, Hawes C, Schumacher K, Kleine-Vehn J (2016) Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc Natl Acad Sci USA 113:452–457PubMedPubMedCentralCrossRefGoogle Scholar
  131. Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–296PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sheahan MB, Rose RJ, McCurdy DW (2007) Actin-filament-dependent remodeling of the vacuole in cultured mesophyll protoplasts. Protoplasma 230:141–152PubMedCrossRefGoogle Scholar
  133. Shemesh T, Klemm RW, Romano FB, Wang SY, Vaughan J, Zhuang XW, Tukachinsky H, Kozlov MM, Rapoport TA (2014) A model for the generation and interconversion of ER morphologies. Proc Natl Acad Sci USA 111:E5243–E5251PubMedCrossRefGoogle Scholar
  134. Shibata Y, Voss C, Rist JM, Hu J, Rapoport TA, Prinz WA, Voeltz GK (2008) The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J Biol Chem 283:18892–18904PubMedPubMedCentralCrossRefGoogle Scholar
  135. Shibata Y, Hu JJ, Kozlov MM, Rapoport TA (2009) Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol 25:329–354PubMedCrossRefGoogle Scholar
  136. Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA (2010) Mechanisms determining the morphology of the peripheral ER. Cell 143:774–788PubMedPubMedCentralCrossRefGoogle Scholar
  137. Siao W, Wang PW, Voigt B, Hussey PJ, Baluska F (2016) Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum-plasma membrane contact sites. J Exp Bot 67:6161–6171PubMedPubMedCentralCrossRefGoogle Scholar
  138. Simonetti B, Cullen PJ (2019) Actin-dependent endosomal receptor recycling. Curr Opin Cell Biol 56:22–33PubMedCrossRefGoogle Scholar
  139. Sparkes I, Runions J, Hawes C, Griffing L (2009a) Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves. Plant Cell 21:3937–3949PubMedPubMedCentralCrossRefGoogle Scholar
  140. Sparkes IA, Ketelaar T, de Ruijter NCA, Hawes C (2009b) Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum. Traffic 10:567–571PubMedCrossRefGoogle Scholar
  141. Sparkes I, Tolley N, Aller I, Svozil J, Osterrieder A, Botchway S, Mueller C, Frigerio L, Hawes C (2010) Five Arabidopsis reticulon isoforms share endoplasmic reticulum location, topology, and membrane-shaping properties. Plant Cell 22:1333–1343PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sparkes IA, Graumann K, Martiniere A, Schoberer J, Wang P, Osterrieder A (2011) Bleach it, switch it, bounce it, pull it: using lasers to reveal plant cell dynamics. J Exp Bot 62:1–7PubMedCrossRefGoogle Scholar
  143. Sparks JA, Kwon T, Renna L, Liao FQ, Brandizzi F, Blancaflor EB (2016) HLB1 is a tetratricopeptide repeat domain-containing protein that operates at the intersection of the exocytic and endocytic pathways at the TGN/EE in Arabidopsis. Plant Cell 28:746–769PubMedPubMedCentralCrossRefGoogle Scholar
  144. Spiegelman Z, Lee CM, Gallagher KL (2018) KinG is a plant-specific kinesin that regulates both intra- and intercellular movement of SHORT-ROOT. Plant Physiol 176:392–405PubMedCrossRefGoogle Scholar
  145. Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165PubMedCrossRefGoogle Scholar
  146. Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51:257–288PubMedCrossRefGoogle Scholar
  147. Staiger CJ, Yuan M, Valenta R, Shaw PJ, Warn RM, Lloyd CW (1994) Microinjected profilin affects cytoplasmic streaming in plant cells by rapidly depolymerizing actin microfilaments. Curr Biol 4:215–219PubMedCrossRefGoogle Scholar
  148. Stefano G, Brandizzi F (2018) Advances in plant ER architecture and dynamics. Plant Physiol 176:178–186PubMedCrossRefGoogle Scholar
  149. Stefano G, Renna L, Moss T, Mcnew JA, Brandizzi F (2012) In Arabidopsis, the spatial and dynamic organization of the endoplasmic reticulum and Golgi apparatus is influenced by the integrity of the C-terminal domain of RHD3, a non-essential GTPase. Plant J 69:957–966PubMedCrossRefGoogle Scholar
  150. Stefano G, Hawes C, Brandizzi F (2014a) ER—the key to the highway. Curr Opin Plant Biol 22:30–38PubMedCrossRefGoogle Scholar
  151. Stefano G, Renna L, Brandizzi F (2014b) The endoplasmic reticulum exerts control over organelle streaming during cell expansion. J Cell Sci 127:947–953PubMedCrossRefGoogle Scholar
  152. Stefano G, Renna L, Lai YS, Slabaugh E, Mannino N, Buono RA, Otegui MS, Brandizzi F (2015) ER network homeostasis is critical for plant endosome streaming and endocytosis. Cell Discov 1:15033PubMedPubMedCentralCrossRefGoogle Scholar
  153. Stefano G, Renna L, Wormsbaecher C, Gamble J, Zienkiewicz K, Brandizzi F (2018) Plant endocytosis requires the ER membrane-anchored proteins VAP27-1 and VAP27-3. Cell Rep 23:2299–2307PubMedCrossRefGoogle Scholar
  154. Stephan O, Cottier S, Fahlen S, Montes-Rodriguez A, Sun J, Eklund DM, Klahre U, Kost B (2014) RISAP is a TGN-associated RAC5 effector regulating membrane traffic during polar cell growth in tobacco. Plant Cell 26:4426–4447PubMedPubMedCentralCrossRefGoogle Scholar
  155. Sun H, Qiao Z, Chua KP, Tursic A, Liu X, Gao YG, Mu YG, Hou XL, Miao YS (2018) Profilin negatively regulates formin-mediated actin assembly to modulate PAMP-triggered plant immunity. Curr Biol 28:1882–1895PubMedCrossRefGoogle Scholar
  156. Szymanski DB, Cosgrove DJ (2009) Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol 19:R800–R811PubMedPubMedCentralCrossRefGoogle Scholar
  157. Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu Rev Plant Physiol Plant Mol Biol 35:585–657CrossRefGoogle Scholar
  158. Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48PubMedCrossRefGoogle Scholar
  159. Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24:44–52PubMedCrossRefGoogle Scholar
  160. Terasaki M, Chen LB, Fujiwara K (1986) Microtubules and the endoplasmic-reticulum are highly interdependent structures. J Cell Biol 103:1557–1568PubMedCrossRefGoogle Scholar
  161. Tolley N, Sparkes IA, Hunter PR, Craddock CP, Nuttall J, Roberts LM, Hawes C, Pedrazzini E, Frigerio L (2008) Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport. Traffic 9:94–102PubMedCrossRefGoogle Scholar
  162. Toufexi A, Duggan C, Pandey P, Savage Z, Segretin ME, Yuen LH, Gaboriau DCA, Leary AY, Khandare V, Ward AD, Botchway SW, Bateman BC, Pan I, Schattat M, Sparkes I, Bozkurt TO (2019) Chloroplasts navigate towards the pathogen interface to counteract infection by the Irish potato famine pathogen. bioRxiv.  https://doi.org/10.1101/516443
  163. Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T, Hasezawa S, Dolja VV, Hara-Nishimura I (2010) Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci USA 107:6894–6899CrossRefPubMedGoogle Scholar
  164. Ueda H, Tamura K, Hara-Nishimura I (2015) Functions of plant-specific myosin XI: from intracellular motility to plant postures. Curr Opin Plant Biol 28:30–38CrossRefPubMedGoogle Scholar
  165. Ueda H, Ohta N, Kimori Y, Uchida T, Shimada T, Tamura K, Hara-Nishimura I (2018) Endoplasmic reticulum (ER) membrane proteins (LUNAPARKs) are required for proper configuration of the cortical ER network in plant cells. Plant Cell Physiol 59:1931–1941PubMedCrossRefGoogle Scholar
  166. Uemura T, Suda Y, Ueda T, Nakano A (2014) Dynamic behavior of the trans-Golgi network in root tissues of Arabidopsis revealed by super-resolution live imaging. Plant Cell Physiol 55:694–703PubMedCrossRefGoogle Scholar
  167. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, Cohen AR, Davidson MW, Betzig E, Lippincott-Schwartz J (2017) Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:162–167PubMedPubMedCentralCrossRefGoogle Scholar
  168. van Vliet AR, Giordano F, Gerlo S, Segura I, Van Eygen S, Molenberghs G, Rocha S, Houcine A, Derua R, Verfaillie T (2017) The ER stress sensor PERK coordinates ER-plasma membrane contact site formation through interaction with filamin-A and F-actin remodeling. Mol Cell 65:885–899.e6Google Scholar
  169. Vazquez-Victorio G, Gonzalez-Espinosa C, Espinosa-Riquer ZP, Macias-Silva M (2016) GPCRs and actin–cytoskeleton dynamics. In: Shukla AK (ed) G protein-coupled receptors. Academic, London, pp 165–188Google Scholar
  170. Vicente-Manzanares M, Choi CK, Horwitz AR (2009) Integrins in cell migration—the actin connection. J Cell Sci 122:199–206PubMedCrossRefGoogle Scholar
  171. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124:573–586PubMedCrossRefGoogle Scholar
  172. Wada M, Kong S-G (2018) Actin-mediated movement of chloroplasts. J Cell Sci 131:jcs210310CrossRefPubMedGoogle Scholar
  173. Wang P, Hussey PJ (2017) NETWORKED 3B: a novel protein in the actin cytoskeleton-endoplasmic reticulum interaction. J Exp Bot 68:1441–1450PubMedPubMedCentralCrossRefGoogle Scholar
  174. Wang PW, Hawkins TJ, Richardson C, Cummins I, Deeks MJ, Sparkes I, Hawes C, Hussey PJ (2014) The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr Biol 24:1397–1405PubMedCrossRefGoogle Scholar
  175. Wang Y, Zheng XY, Yu BJ, Han SJ, Guo JB, Tang HP, Yu AYL, Deng HT, Hong YG, Liu YL (2015) Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy. Autophagy 11:2259–2274PubMedPubMedCentralCrossRefGoogle Scholar
  176. Wang P, Richardson C, Hawkins TJ, Sparkes I, Hawes C, Hussey PJ (2016a) Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol 210:1311–1326PubMedCrossRefGoogle Scholar
  177. Wang PW, Richardson C, Hawes C, Hussey PJ (2016b) Arabidopsis NAP1 regulates the formation of autophagosomes. Curr Biol 26:2060–2069PubMedCrossRefGoogle Scholar
  178. Wang S, Tukachinsky H, Romano FB, Rapoport TA (2016c) Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network. elife 5:e18605PubMedPubMedCentralCrossRefGoogle Scholar
  179. Wang PW, Hawes C, Hussey PJ (2017a) Plant endoplasmic reticulum-plasma membrane contact sites. Trends Plant Sci 22:289–297CrossRefPubMedGoogle Scholar
  180. Wang X, Li S, Wang H, Shui W, Hu J (2017b) Quantitative proteomics reveal proteins enriched in tubular endoplasmic reticulum of Saccharomyces cerevisiae. elife 6:e23816PubMedPubMedCentralCrossRefGoogle Scholar
  181. Waterman-Storer CM, Salmon ED (1998) Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr Biol 8:798–806PubMedCrossRefGoogle Scholar
  182. Wei LQ, Zhang W, Liu ZH, Li Y (2009) AtKinesin-13A is located on Golgi-associated vesicle and involved in vesicle formation/budding in Arabidopsis root-cap peripheral cells. BMC Plant Biol 9:138PubMedPubMedCentralCrossRefGoogle Scholar
  183. Westrate LM, Lee JE, Prinz WA, Voeltz GK (2015) Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem 84:791–811PubMedCrossRefGoogle Scholar
  184. Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115–136PubMedCrossRefGoogle Scholar
  185. Yadav S, Linstedt AD (2011) Golgi positioning. Cold Spring Harb Perspect Biol 3:a005322PubMedPubMedCentralCrossRefGoogle Scholar
  186. Yang XC, Bassham DC (2015) New insight into the mechanism and function of autophagy in plant cells. In: Jeon KW (ed) International review of cell and molecular biology. Academic, Burlington, MA, pp 1–40Google Scholar
  187. Yokota E, Ueda H, Hashimoto K, Orii H, Shimada T, Hara-Nishimura I, Shimmen T (2011) Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells. Plant Physiol 156:129–143PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zhang M, Wu FY, Shi JM, Zhu YM, Zhu ZM, Gong QQ, Hu JJ (2013) ROOT HAIR DEFECTIVE3 family of dynamin-like GTPases mediates homotypic endoplasmic reticulum fusion and is essential for Arabidopsis development. Plant Physiol 163:713–720PubMedPubMedCentralCrossRefGoogle Scholar
  189. Zhang C, Hicks GR, Raikhel NV (2014) Plant vacuole morphology and vacuolar trafficking. Front Plant Sci 5:476PubMedPubMedCentralGoogle Scholar
  190. Zheng JM, Han SW, Rodriguez-Welsh MF, Rojas-Pierce M (2014) Homotypic vacuole fusion requires VTI11 and is regulated by phosphoinositides. Mol Plant 7:1026–1040PubMedCrossRefGoogle Scholar
  191. Zhong RQ, Burk DH, Morrison WH, Ye ZH (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117PubMedPubMedCentralCrossRefGoogle Scholar
  192. Zhou X, He Y, Huang X, Guo Y, Li D, Hu J (2019) Reciprocal regulation between lunapark and atlastin facilitates ER three-way junction formation. Protein Cell 10:510–525PubMedCrossRefGoogle Scholar
  193. Zhu CM, Ganguly A, Baskin TI, McClosky DD, Anderson CT, Foster C, Meunier KA, Okamoto R, Berg H, Dixit R (2015) The fragile Fiber1 kinesin contributes to cortical microtubule-mediated trafficking of cell wall components. Plant Physiol 167:780–792PubMedPubMedCentralCrossRefGoogle Scholar
  194. Zhu X, Li S, Pan S, Xin X, Gu Y (2018a) CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. Proc Natl Acad Sci USA 115:E5635–E5635CrossRefGoogle Scholar
  195. Zhu YM, Zhang GM, Lin SY, Shi JM, Zhang H, Hu JJ (2018b) Sec61 beta facilitates the maintenance of endoplasmic reticulum homeostasis by associating microtubules. Protein Cell 9:616–628PubMedCrossRefGoogle Scholar
  196. Zientara-Rytter K, Sirko A (2014) Selective autophagy receptor Joka2 co-localizes with cytoskeleton in plant cells. Plant Signal Behav 9:e28523PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.MSU-DOE Plant Research LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Department of Plant BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations