Engineering Notes on Concepts of the Finite Element Method for Elliptic Problems

  • Jörg SchröderEmail author
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 597)


In this contribution, we discuss some basic mechanical and mathematical features of the finite element technology for elliptic boundary value problems. Originating from an engineering perspective, we will introduce step by step of some basic mathematical concepts in order to set a basis for a deeper discussion of the rigorous mathematical approaches. In this context, we consider the boundedness of functions, the classification of the smoothness of functions, classical and mixed variational formulations as well as the \(H^{-1}\)-FEM in linear elasticity. Another focus is on the analysis of saddle point problems occurring in several mixed finite element formulations, especially on the solvability and stability of the associated discretized versions.



We thank the DFG for the financial support within the SPP 1748 Reliable Simulation Techniques in Solid Mechanics. Development of Non-standard Discretization Methods, Mechanical and Mathematical Analysis, project Novel finite elements— Mixed, Hybrid and Virtual Element formulations (Projectnumber: 255432295) (SCHR 570/23-2). I would also like to thank Nils Viebahn for helpful discussions and his help with the manuscript and Sascha Maassen and Rainer Niekamp for the implementation of the \(H^{-1}\)procedure and accompanying discussions.


  1. Auricchio, F., Brezzi, F., & Lovadina, C. (2004). Mixed finite element methods. In E. Stein, R. de Borst, & T. J. R. Hughes (Eds.), Encyclopedia of computational mechanics (Chap. 9, pp. 238–277). Wiley and Sons.Google Scholar
  2. Bathe, K.-J. (1996). Finite element procedures. New Jersey: Prentice Hall.zbMATHGoogle Scholar
  3. Becker, E. B., Carey, G. F. & Oden, J. T. (1981). Finite elements, an introduction: Volume I. Prentice-Hall.Google Scholar
  4. Berdichevsky, V. L. (2009). Variational principles of continuum mechanics. Springer.Google Scholar
  5. Boffi, D., Brezzi, F., & Fortin, M. (2009). Reduced symmetry elements in linear elasticity. Communications on Pure and Applied Analysis, 8, 95–121.MathSciNetzbMATHGoogle Scholar
  6. Boffi, D., Brezzi, F., & Fortin, M. (2013). Mixed finite element methods and applications. Heidelberg: Springer.CrossRefGoogle Scholar
  7. Braess, D. (1997). Finite elemente (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar
  8. Brenner, S. C. & Scott, L. R. (2002). The mathematical theory of finite element methods. In Texts in applied mathematics (Vol. 15, 2nd edition). New York: Springer.Google Scholar
  9. Brezzi F. (1974). On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 8(2), 129–151.MathSciNetCrossRefGoogle Scholar
  10. Chapelle, D., & Bathe, K.-J. (1993). The inf-sup test. Computers and Structures, 47, 537–545.Google Scholar
  11. Crouzeix, M., & Raviart, P.-A. (1973). Conforming and nonconforming finite element methods for solving the stationary stokes equations i. Revue francaise d’automatique, informatique, recherche operationnelle, 7(3), 33–75.MathSciNetCrossRefGoogle Scholar
  12. Devendran, D., May, S., & Corona, E. (2009). Computational fluid dynamics reading group: Finite element methods for stokes and the infamous inf-sup condition.Google Scholar
  13. Ern, A., & Guermond, J.-L. (2013). Theory and practice of finite elements (Vol. 159). Springer Science & Business Media.Google Scholar
  14. Gockenbach, M. S. (2006). Understanding and implementing the finite element method. SIAM.Google Scholar
  15. Goebbels, S. (2015). An inequality for negative norms with application to errors of finite element methods.Google Scholar
  16. Hood, P., & Taylor, C. (1974). Navier-stokes equations using mixed interpolation. In J. T. Oden, O. C. Zienkiewicz, R. H. Gallagher, & C. Taylor (Eds.), Finite element methods in flow problems (pp. 121–132). UAH Press.Google Scholar
  17. Hughes, T. J. R. (1987). The finite element method. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
  18. Kendall, R. P., & Wheeler, M. F. (1976). A Crank-Nicolson H\(^{-1}\)-Galerkin procedure for parabolic problems in a single-space variable. SIAM Journal on Numerical Analysis, 13, 861–876.MathSciNetCrossRefGoogle Scholar
  19. Oden, J. T., & Carey, G. F. (1983). Finite elements. Mathematical aspects. Volume IV. Prentice-Hall.Google Scholar
  20. Oden, J. T., & Reddy, J. N. (1976). An introduction to the mathematical theory of finite elements. Wiley.Google Scholar
  21. Rachford, H. H., Wheeler, J. R., & Wheeler, M. F. (1974). An H\(^{-1}\)-Galerkin procedure for the two-point boundary value problem. In C. de Boor (Ed.), Mathematical Aspects of Finite Elements in Partial Differential Equations, Proceedings of Symposium, Conducted by the Mathematics Research Center, The University of Wisconsin-Madison. Academic Press.Google Scholar
  22. Royden, H. L. (1968). Real analysis. New York: Macmillan.zbMATHGoogle Scholar
  23. Thomée, V. (1980). Negative norm estimates and superconvergence in Galerkin methods for parabolic problems. Mathematics of Computation, 34(149), 93–113.MathSciNetCrossRefGoogle Scholar
  24. Thomée, V. (2006). Galerkin finite element methods for parabolic problems. Berlin, Heidelberg: Springer.zbMATHGoogle Scholar
  25. Wriggers, P. (2008). Nonlinear finite element methods. Springer.Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2020

Authors and Affiliations

  1. 1.Department of Civil Engineering, Faculty of Engineering, Institute of MechanicsUniversity of Duisburg-EssenEssenGermany

Personalised recommendations