In-Air Imaging Sonar Sensor Network with Real-Time Processing Using GPUs

  • Wouter JansenEmail author
  • Dennis Laurijssen
  • Robin Kerstens
  • Walter Daems
  • Jan Steckel
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 96)


For autonomous navigation and robotic applications, sensing the environment correctly is crucial. Many sensing modalities for this purpose exist. In recent years, one such modality that is being used is in-air imaging sonar. It is ideal in complex environments with rough conditions such as dust or fog. However, like with most sensing modalities, to sense the full environment around the mobile platform, multiple such sensors are needed to capture the full 360-degree range. Currently the processing algorithms used to create this data are insufficient to do so for multiple sensors at a reasonably fast update rate. Furthermore, a flexible and robust framework is needed to easily implement multiple imaging sonar sensors into any setup and serve multiple application types for the data. In this paper we present a sensor network framework designed for this novel sensing modality. Furthermore, an implementation of the processing algorithm on a Graphics Processing Unit is proposed to potentially decrease the computing time to allow for real-time processing of one or more imaging sonar sensors at a sufficiently high update rate.


  1. 1.
    Asen, J.P., Buskenes, J.I., Nilsen, C.I.C., Austeng, A., Holm, S.: Implementing Capon beamforming on a GPU for real-time cardiac ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(1), 76–85 (2014). Scholar
  2. 2.
    Belloch, J.A., Ferrer, M., Gonzalez, A., Martinez-Zaldivar, F., Vidal, A.M.: Headphone-based virtual spatialization of sound with a GPU accelerator. J. Audio Eng. Soc. 61(7/8), 546–561 (2013)Google Scholar
  3. 3.
    Belloch, J.A., Bank, B., Savioja, L., Gonzalez, A., Valimaki, V.: Multi-channel IIR filtering of audio signals using a GPU. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, pp 6692–6696. IEEE (2014).
  4. 4.
    Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986). Scholar
  5. 5.
    Buskenes, J.I., Åsen, J.P., Nilsen, C.I.C., Austeng, A.: Adapting the minimum variance beamformer to a graphics processing unit for active sonar imaging systems. J. Acoust. Soc. Am. 133(5), 3613–3613 (2013). Scholar
  6. 6.
    Buskenes, J.I., Asen, J.P., Nilsen, C.I.C., Austeng, A.: An optimized GPU implementation of the MVDR beamformer for active sonar imaging. IEEE J. Oceanic Eng. 40(2), 441–451 (2015). Scholar
  7. 7.
    Griffin, D.R.: Listening in the Dark: The Acoustic Orientation of Bats and Men. Dover Publications (1974)Google Scholar
  8. 8.
    Kerstens R., Laurijssen, D., Schouten, G., Steckel, J.: 3D point cloud data acquisition using a synchronized in-air imaging sonar sensor network. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2019, to be published)Google Scholar
  9. 9.
    Kerstens, R., Laurijssen, D., Steckel, J.: eRTIS: a fully embedded real time 3D imaging sonar sensor for robotic applications. In: IEEE International Conference on Robotics and Automation (2019, to be published)Google Scholar
  10. 10.
    Lorente, J., Vidal, A.M., Pinero, G., Belloch, J.A.: Parallel implementations of beamforming design and filtering for microphone array applications. In: European Signal Processing Conference (2011)Google Scholar
  11. 11.
    Schneider, M., Schuh, F., Kellermann, W.: The generalized frequency-domain adaptive filtering algorithm implemented on a GPU for large-scale multichannel acoustic echo cancellation. In: Speech Communication, 10. ITG Symposium, VDE Verlag GmbH, p. 296 (2012)Google Scholar
  12. 12.
    NVIDIA: CUDA Toolkit (2019).
  13. 13.
    Python: GlobalInterpreterLock (2019).
  14. 14.
    Schnitzler, H.U., Moss, C.F., Denzinger, A.: From spatial orientation to food acquisition in echolocating bats. Trends Ecol. Evol. 18(8), 386–394 (2003). Scholar
  15. 15.
    Steckel, J.: RTIS (2019).
  16. 16.
    Steckel, J., Peremans, H.: BatSLAM: simultaneous localization and mapping using biomimetic sonar. PLoS ONE 8(1), e54,076 (2013). Scholar
  17. 17.
    Steckel, J., Peremans, H.: Acoustic flow-based control of a mobile platform using a 3D sonar sensor. IEEE Sens. J. 17(10), 3131–3141 (2017). Scholar
  18. 18.
    Steckel, J., Boen, A., Peremans, H.: Broadband 3-D sonar system using a sparse array for indoor navigation. IEEE Trans. Rob. 29(1), 161–171 (2013). Scholar
  19. 19.
    Van Trees, H.L.: Optimum Array Processing. Wiley, New York (2002).
  20. 20.
    Vanneste, S., de Hoog, J., Huybrechts, T., Bosmans, S., Sharif, M., Mercelis, S., Hellinckx, P.: Distributed uniform streaming framework: towards an elastic fog computing platform for event stream processing. In: International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 426–436 (2018).
  21. 21.
    Garage, W.: Stanford Artificial Intelligence Laboratory. (2019).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Wouter Jansen
    • 1
    Email author
  • Dennis Laurijssen
    • 1
  • Robin Kerstens
    • 1
  • Walter Daems
    • 1
  • Jan Steckel
    • 1
  1. 1.Faculty of Applied Engineering - CoSys LabUniversity of AntwerpAntwerpBelgium

Personalised recommendations