Advertisement

A New Approach to Selectively Implement Control Flow Error Detection Techniques

  • Jens Vankeirsbilck
  • Jonas Van Waes
  • Hans Hallez
  • Jeroen BoydensEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 96)

Abstract

Many software-implemented control flow error detection techniques have been proposed over the years. In an effort to reduce their overhead, recent research has focused on selective approaches. However, correctly applying these approaches can be difficult. This paper aims to address this concern and proposes a new approach. Our new approach is easier to implement and is applicable on any existing control flow error detection technique. To prove its validity, we apply our new approach to the Random Additive Control Flow Error Detection technique and perform fault injection experiments. The results show that the selective implementation has approximately the same error detection ratio with a decrease in execution time overhead.

Notes

Acknowledgement

This work is supported by a research grant from the Baekeland program of the Flemish Agency for Innovation and Entrepreneurship (VLAIO) in cooperation with Televic Healthcare NV, under grant agreement IWT 150696.

References

  1. 1.
    Alkhalifa, Z., Nair, V.S.S., Krishnamurthy, N., Abraham, J.A.: Design and evaluation of system-level checks for on-line control flow error detection. IEEE Trans. Parallel Distrib. Syst. 10(6), 627–641 (1999).  https://doi.org/10.1109/71.774911CrossRefGoogle Scholar
  2. 2.
    Asghari, S.A., Abdi, A., Taheri, H., Pedram, H., Pourmozaffari, S.: SEDSR: soft error detection using software redundancy. J. Softw. Eng. Appl. 5(9), 664–670 (2012).  https://doi.org/10.4236/jsea.2012.59078CrossRefGoogle Scholar
  3. 3.
    Asghari, S.A., Taheri, H., Pedram, H., Kaynak, O.: Software-based control flow checking against transient faults in industrial environments. IEEE Trans. Industr. Inf. 10(1), 481–490 (2014).  https://doi.org/10.1109/TII.2013.2248373CrossRefGoogle Scholar
  4. 4.
    Baffreau, S., Bendhia, S., Ramdani, M., Sicard, E.: Characterisation of microcontroller susceptibility to radio frequency interference. In: Proceedings of the Fourth IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No.02TH8611), pp. I031–1–I031–5 (2002).  https://doi.org/10.1109/ICCDCS.2002.1004088
  5. 5.
    Chielle, E., Rodrigues, G.S., Kastensmidt, F.L., Cuenca-Asensi, S., Tambara, L.A., Rech, P., Quinn, H.: S-SETA: selective software-only error-detection technique using assertions. IEEE Trans. Nucl. Sci. 62(6), 3088–3095 (2015).  https://doi.org/10.1109/TNS.2015.2484842CrossRefGoogle Scholar
  6. 6.
    Goloubeva, O., Rebaudengo, M., Sonza Reorda, M., Violante, M.: Soft-error detection using control flow assertions. In: Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, DFT 2003, Washington, DC, USA, pp. 581–588. IEEE Computer Society (2003)Google Scholar
  7. 7.
    Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench: a free, commercially representative embedded benchmark suite. In: Proceedings of the Fourth Annual IEEE International Workshop on Workload Characterization. WWC-4 (Cat. No. 01EX538), pp. 3–14 (2001).  https://doi.org/10.1109/WWC.2001.990739
  8. 8.
    Imperas: Revolutionizing embedded software development (2018). http://www.imperas.com/
  9. 9.
    Khudia, D.S., Mahlke, S.: Low cost control flow protection using abstract control signatures. SIGPLAN Not. 48(5), 3–12 (2013).  https://doi.org/10.1145/2499369.2465568CrossRefGoogle Scholar
  10. 10.
    Li, A., Hong, B.: Software implemented transient fault detection in space computer. Aerosp. Sci. Technol. 11(2), 245–252 (2007).  https://doi.org/10.1016/j.ast.2006.06.006CrossRefGoogle Scholar
  11. 11.
    Nicolescu, B., Savaria, Y., Velazco, R.: SIED: software implemented error detection. In: Proceedings 18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 589–596 (2003)Google Scholar
  12. 12.
    Oh, N., Shirvani, P.P., McCluskey, E.J.: Control-flow checking by software signatures. IEEE Trans. Reliab. 51(1), 111–122 (2002)CrossRefGoogle Scholar
  13. 13.
    Sierawski, B.D., Reed, R.A., Mendenhall, M.H., Weller, R.A., Schrimpf, R.D., Wen, S.J., Wong, R., Tam, N., Baumann, R.C.: Effects of scaling on muon-induced soft errors. In: 2011 International Reliability Physics Symposium, pp. 3C.3.1–3C.3.6 (2011).  https://doi.org/10.1109/IRPS.2011.5784484
  14. 14.
    Tang, A., Sethumadhavan, S., Stolfo, S.: CLKSCREW: exposing the perils of security-oblivious energy management. In: 26th USENIX Security Symposium (USENIX Security 17), pp. 1057–1074. USENIX Association, Vancouver, BC (2017)Google Scholar
  15. 15.
    Vankeirsbilck, J., Penneman, N., Hallez, H., Boydens, J.: Random additive control flow error detection. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) Computer Safety, Reliability, and Security, pp. 220–234. Springer International Publishing, Cham (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jens Vankeirsbilck
    • 1
  • Jonas Van Waes
    • 1
  • Hans Hallez
    • 1
  • Jeroen Boydens
    • 1
    Email author
  1. 1.Department of Computer ScienceKU LeuvenBruggeBelgium

Personalised recommendations