Advertisement

A Message Relaying Method with Enhanced Dynamic Timer Considering Decrease Rate of Neighboring Nodes for Vehicular-DTN

  • Shogo Nakasaki
  • Makoto IkedaEmail author
  • Leonard Barolli
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 97)

Abstract

In recent years, the store-and-carry scheme has focused on recovery method which can be effectively applied to sparse and dense networks. In this paper, we propose a message relaying method with enhanced dynamic timer considering decrease rate of neighboring vehicles for Vehicular Delay/Disruption/Disconnection Tolerant Networking (DTN). From the simulation results, we found that the proposed method can reduce storage usage while maintaining high delivery rate.

Keywords

Message relaying method Vehicular DTN Dynamic timer 

References

  1. 1.
    Rec. ITU-R P.1411-7: Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. ITU (2013)Google Scholar
  2. 2.
    Araniti, G., Bezirgiannidis, N., Birrane, E., Bisio, I., Burleigh, S., Caini, C., Feldmann, M., Marchese, M., Segui, J., Suzuki, K.: Contact graph routing in DTN space networks: overview, enhancements and performance. IEEE Commun. Mag. 53(3), 38–46 (2015)CrossRefGoogle Scholar
  3. 3.
    Caini, C., Cruickshank, H., Farrell, S., Marchese, M.: Delay- and disruption-tolerant networking (DTN): an alternative solution for future satellite networking applications. Proc. IEEE 99(11), 1980–1997 (2011)CrossRefGoogle Scholar
  4. 4.
    Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., Weiss, H.: Delay-tolerant networking architecture. IETF RFC 4838 (Informational), April 2007Google Scholar
  5. 5.
    Dias, J.A.F.F., Rodrigues, J.J.P.C., Xia, F., Mavromoustakis, C.X.: A cooperative watchdog system to detect misbehavior nodes in vehicular delay-tolerant networks. IEEE Trans. Ind. Electron. 62(12), 7929–7937 (2015)CrossRefGoogle Scholar
  6. 6.
    Fall, K.: A delay-tolerant network architecture for challenged Internets. In: Proceedings of the International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM 2003, pp. 27–34 (2003)Google Scholar
  7. 7.
    Grassi, G., Pesavento, D., Pau, G., Vuyyuru, R., Wakikawa, R., Zhang, L.: VANET via named data networking. In: Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS 2014), pp. 410–415, April 2014Google Scholar
  8. 8.
    Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., Chen, S.: Vehicular fog computing: a viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol. 65(6), 3860–3873 (2016)CrossRefGoogle Scholar
  9. 9.
    Kenney, J.B.: Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 99, 1162–1182 (2011)CrossRefGoogle Scholar
  10. 10.
    Lin, D., Kang, J., Squicciarini, A., Wu, Y., Gurung, S., Tonguz, O.: MoZo: a moving zone based routing protocol using pure V2V communication in VANETs. IEEE Trans. Mob. Comput. 16(5), 1357–1370 (2017)CrossRefGoogle Scholar
  11. 11.
    Lyft: Dataset of lyft level 5, July 2019. https://level5.lyft.com/dataset/
  12. 12.
    Mahmoud, A., Noureldin, A., Hassanein, H.S.: VANETs positioning in urban environments: a novel cooperative approach. In: Proceedings of the IEEE 82nd Vehicular Technology Conference (VTC-2015 Fall), pp. 1–7, September 2015Google Scholar
  13. 13.
    Nakasaki, S., Ikeda, M., Barolli, L.: A message relaying method with a dynamic timer considering non-signal duration from neighboring nodes for vehicular DTNs. Accepted, to appear in Proceedings of the 11th International Conference on Intelligent Networking and Collaborative Systems (INCoS-2019), September 2019Google Scholar
  14. 14.
    Ning, Z., Hu, X., Chen, Z., Zhou, M., Hu, B., Cheng, J., Obaidat, M.S.: A cooperative quality-aware service access system for social internet of vehicles. IEEE Internet Things J. 5(4), 2506–2517 (2018)CrossRefGoogle Scholar
  15. 15.
    Ohn-Bar, E., Trivedi, M.M.: Learning to detect vehicles by clustering appearance patterns. IEEE Trans. Intell. Transp. Syst. 16(5), 2511–2521 (2015)CrossRefGoogle Scholar
  16. 16.
    Radenkovic, M., Walker, A.: CognitiveCharge: disconnection tolerant adaptive collaborative and predictive vehicular charging. In: Proceedings of the 4th ACM MobiHoc Workshop on Experiences with the Design and Implementation of Smart Objects (SMARTOBJECTS-2018), June 2018Google Scholar
  17. 17.
    Ramanathan, R., Hansen, R., Basu, P., Hain, R.R., Krishnan, R.: Prioritized epidemic routing for opportunistic networks. In: Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking (MobiOpp 2007), pp. 62–66 (2007)Google Scholar
  18. 18.
    Rüsch, S., Schürmann, D., Kapitza, R., Wolf, L.: Forward secure delay-tolerant networking. In: Proceedings of the 12th Workshop on Challenged Networks (CHANTS-2017), pp. 7–12, October 2017Google Scholar
  19. 19.
    Scenargie: Space-time engineering, LLC. http://www.spacetime-eng.com/
  20. 20.
    Stute, M., Maass, M., Schons, T., Hollick, M.: Reverse engineering human mobility in large-scale natural disasters. In: Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM-2017), pp. 219–226, November 2017Google Scholar
  21. 21.
    Theodoropoulos, T., Damousis, Y., Amditis, A.: A load balancing control algorithm for EV static and dynamic wireless charging. In: Proceedings of the IEEE 81st Vehicular Technology Conference (VTC-2015 Spring), pp. 1–5, May 2015Google Scholar
  22. 22.
    Tornell, S.M., Calafate, C.T., Cano, J.C., Manzoni, P.: DTN protocols for vehicular networks: an application oriented overview. IEEE Commun. Surv. Tutorials 17(2), 868–887 (2015)CrossRefGoogle Scholar
  23. 23.
    Uchida, N., Ishida, T., Shibata, Y.: Delay tolerant networks-based vehicle-to-vehicle wireless networks for road surveillance systems in local areas. Int. J. Space-Based Situated Comput. 6(1), 12–20 (2016)CrossRefGoogle Scholar
  24. 24.
    Urquiza-Aguiar, L., Igartua, M.A., Tripp-Barba, C., Calderón-Hinojosa, X.: 2hGAR: 2-hops geographical anycast routing protocol for vehicle-to-infrastructure communications. In: Proceedings of the 15th ACM International Symposium on Mobility Management and Wireless Access (MobiWac-2017), pp. 145–152, November 2017Google Scholar
  25. 25.
    Vahdat, A., Becker, D.: Epidemic routing for partially-connected ad hoc networks. Duke University, Technical report (2000)Google Scholar
  26. 26.
    Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., Wissler, S.: Disruption tolerant networking flight validation experiment on NASA’s EPOXI mission. In: Proceedings of the 1st International Conference on Advances in Satellite and Space Communications (SPACOMM-2009), pp. 187–196, July 2009Google Scholar
  27. 27.
    Zhang, W., Jiang, S., Zhu, X., Wang, Y.: Cooperative downloading with privacy preservation and access control for value-added services in VANETs. Int. J. Grid Utility Comput. 7(1), 50–60 (2016)CrossRefGoogle Scholar
  28. 28.
    Zhou, H., Wang, H., Li, X., Leung, V.C.M.: A survey on mobile data offloading technologies. IEEE Access 6, 5101–5111 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Graduate School of EngineeringFukuoka Institute of TechnologyFukuokaJapan
  2. 2.Department of Information and Communication EngineeringFukuoka Institute of TechnologyFukuokaJapan

Personalised recommendations