Advertisement

A Fuzzy-Based Simulation System for IoT Node Selection in Opportunistic Networks and Testbed Implementation

  • Miralda CukaEmail author
  • Donald Elmazi
  • Keita Matsuo
  • Makoto Ikeda
  • Leonard Barolli
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 97)

Abstract

In opportunistic networks the communication opportunities (contacts) are intermittent and there is no need to establish an end-to-end link between the communication nodes. The enormous growth of nodes having access to the Internet, along the vast evolution of the Internet and the connectivity of objects and nodes, has evolved as Internet of Things (IoT). There are different issues for these networks. One of them is the selection of IoT nodes in order to carry out a task in opportunistic networks. In this work, we implement a Fuzzy-Based System for IoT node selection in opportunistic networks. For our proposed system, we use four input parameters: Node’s Distance from Task (NDT), Node’s Remaining Energy (NRE), Node’s Buffer Occupancy (NBO) and Node Inter Contact Time (NICT). The output parameter is Node Selection Decision (NSD). We also implemented a testbed with the same input and output parameters and compared its results with the simulation results. The results show that the proposed system makes a proper selection decision of IoT nodes in opportunistic networks. The IoT node selection is increased up to 40% and decreased 38% by decreasing NBO and increasing NICT, respectively.

References

  1. 1.
    Mantas, N., Louta, M., Karapistoli, E., Karetsos, G.T., Kraounakis, S., Obaidat, M.S.: Towards an incentive-compatible, reputation-based framework for stimulating cooperation in opportunistic networks: a survey. IET Netw. 6(6), 169–178 (2017)CrossRefGoogle Scholar
  2. 2.
    Sharma, D.K., Sharma, A., Kumar, J., et al.: KNNR: K-nearest neighbour classification based routing protocol for opportunistic networks. In: 10-th International Conference on Contemporary Computing (IC3), pp. 1–6. IEEE (2017)Google Scholar
  3. 3.
    Kraijak, S., Tuwanut, P.: A survey on internet of things architecture, protocols, possible applications, security, privacy, real-world implementation and future trends. In: 16th International Conference on Communication Technology (ICCT), pp. 26–31. IEEE (2015)Google Scholar
  4. 4.
    Arridha, R., Sukaridhoto, S., Pramadihanto, D., Funabiki, N.: Classification extension based on iot-big data analytic for smart environment monitoring and analytic in real-time system. Int. J. Space-Based Situated Comput. 7(2), 82–93 (2017)CrossRefGoogle Scholar
  5. 5.
    Dhurandher, S.K., Sharma, D.K., Woungang, I., Bhati, S.: HBPR: history based prediction for routing in infrastructure-less opportunistic networks. In: 27th International Conference on Advanced Information Networking and Applications (AINA), pp. 931–936. IEEE (2013)Google Scholar
  6. 6.
    Spaho, E., Mino, G., Barolli, L., Xhafa, F.: Goodput and PDR analysis of AODV, OLSR and DYMO protocols for vehicular networks using cavenet. Int. J. Grid Util. Comput. 2(2), 130–138 (2011)CrossRefGoogle Scholar
  7. 7.
    Abdulla, M., Simon, R.: The impact of intercontact time within opportunistic networks: protocol implications and mobility models. TechRepublic White Paper (2009)Google Scholar
  8. 8.
    Patra, T.K., Sunny, A.: Forwarding in heterogeneous mobile opportunistic networks. IEEE Commun. Lett. 22(3), 626–629 (2018)CrossRefGoogle Scholar
  9. 9.
    Popereshnyak, S., Suprun, O., Suprun, O., Wieckowski, T.: IoT application testing features based on the modelling network. In: The 14-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), pp. 127–131. IEEE (2018)Google Scholar
  10. 10.
    Chen, N., Yang, Y., Li, J., Zhang, T.: A fog-based service enablement architecture for cross-domain IoT applications. In: 2017 IEEE Fog World Congress (FWC), pp. 1–6. IEEE (2017)Google Scholar
  11. 11.
    Pozza, R., Nati, M., Georgoulas, S., Moessner, K., Gluhak, A.: Neighbor discovery for opportunistic networking in internet of things scenarios: a survey. IEEE Access 3, 1101–1131 (2015)CrossRefGoogle Scholar
  12. 12.
    Inaba, T., Sakamoto, S., Kolici, V., Mino, G., Barolli, L.: A CAC scheme based on fuzzy logic for cellular networks considering security and priority parameters. In: The 9-th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA-2014), pp. 340–346 (2014)Google Scholar
  13. 13.
    Spaho, E., Sakamoto, S., Barolli, L., Xhafa, F., Barolli, V., Iwashige, J.: A fuzzy-based system for peer reliability in JXTA-overlay P2P considering number of interactions. In: The 16th International Conference on Network-Based Information Systems (NBiS-2013), pp. 156–161 (2013)Google Scholar
  14. 14.
    Matsuo, K., Elmazi, D., Liu, Y., Sakamoto, S., Mino, G., Barolli, L.: FACS-MP: a fuzzy admission control system with many priorities for wireless cellular networks and its performance evaluation. J. High Speed Netw. 21(1), 1–14 (2015)CrossRefGoogle Scholar
  15. 15.
    Grabisch, M.: The application of fuzzy integrals in multicriteria decision making. Eur. J. Oper. Res. 89(3), 445–456 (1996)CrossRefGoogle Scholar
  16. 16.
    Inaba, T., Elmazi, D., Liu, Y., Sakamoto, S., Barolli, L., Uchida, K.: Integrating wireless cellular and ad-hoc networks using fuzzy logic considering node mobility and security. The 29th IEEE International Conference on Advanced Information Networking and Applications Workshops (WAINA-2015), pp. 54–60 (2015)Google Scholar
  17. 17.
    Kulla, E., Mino, G., Sakamoto, S., Ikeda, M., Caballé, S., Barolli, L.: FBMIS: a fuzzy-based multi-interface system for cellular and ad hoc networks. In: International Conference on Advanced Information Networking and Applications (AINA-2014), pp. 180–185 (2014)Google Scholar
  18. 18.
    Elmazi, D., Kulla, E., Oda, T., Spaho, E., Sakamoto, S., Barolli, L.: A comparison study of two fuzzy-based systems for selection of actor node in wireless sensor actor networks. J. Ambient Intell. Humaniz. Comput. 6(5), 635–645 (2015)CrossRefGoogle Scholar
  19. 19.
    Zadeh, L.: Fuzzy logic, neural networks, and soft computing. ACM Commun. 37, 77–85 (1994)CrossRefGoogle Scholar
  20. 20.
    Spaho, E., Sakamoto, S., Barolli, L., Xhafa, F., Ikeda, M.: Trustworthiness in P2P: performance behaviour of two fuzzy-based systems for JXTA-overlay platform. Soft. Comput. 18(9), 1783–1793 (2014)CrossRefGoogle Scholar
  21. 21.
    Inaba, T., Sakamoto, S., Kulla, E., Caballe, S., Ikeda, M., Barolli, L.: An integrated system for wireless cellular and ad-hoc networks using fuzzy logic. In: International Conference on Intelligent Networking and Collaborative Systems (INCoS-2014), pp. 157–162 (2014)Google Scholar
  22. 22.
    Matsuo, K., Elmazi, D., Liu, Y., Sakamoto, S., Barolli, L.: A multi-modal simulation system for wireless sensor networks: a comparison study considering stationary and mobile sink and event. J. Ambient Intell. Humaniz. Comput. 6(4), 519–529 (2015)CrossRefGoogle Scholar
  23. 23.
    Kolici, V., Inaba, T., Lala, A., Mino, G., Sakamoto, S., Barolli, L.: A fuzzy-based CAC scheme for cellular networks considering security. In: International Conference on Network-Based Information Systems (NBiS-2014), pp. 368–373 (2014)Google Scholar
  24. 24.
    Liu, Y., Sakamoto, S., Matsuo, K., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study for two fuzzy-based systems: improving reliability and security of JXTA-overlay P2P platform. Soft. Comput. 20(7), 2677–2687 (2015)CrossRefGoogle Scholar
  25. 25.
    Matsuo, K., Elmazi, D., Liu, Y., Sakamoto, S., Mino, G., Barolli, L.: FACS-MP: a fuzzy admission control system with many priorities for wireless cellular networks and its perforemance evaluation. J. High Speed Netw. 21(1), 1–14 (2015)CrossRefGoogle Scholar
  26. 26.
    Mendel, J.M.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83(3), 345–377 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Miralda Cuka
    • 1
    Email author
  • Donald Elmazi
    • 2
  • Keita Matsuo
    • 2
  • Makoto Ikeda
    • 2
  • Leonard Barolli
    • 2
  1. 1.Graduate School of EngineeringFukuoka Institute of Technology (FIT)FukuokaJapan
  2. 2.Department of Information and Communication EngineeringFukuoka Institute of Technology (FIT)FukuokaJapan

Personalised recommendations