Advertisement

Thermal Processes in Vacuum

  • Viktor JózsaEmail author
  • Róbert Kovács
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

The dominant heat transfer mode in vacuum is thermal radiation which is emphasized in the present chapter. Besides its relevance in space exploration, several industrial processes and commercial products use vacuum directly or its production require a technological process under vacuum. Firstly, the fundamentals of thermal radiation are briefly discussed to highlight the governing parameters of the process. Then the available thermal control methods are introduced with supporting examples. Finally, the thermal design and analysis of the SMOG-1 PocketQube class satellite is detailed, performed by the authors of this book.

Keywords

Vacuum Thermal radiation Satellite Thermal network Insulation Heat shield 

References

  1. 1.
    M. Kociak, L.F. Zagonel, Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 176, 112–131 (2017)CrossRefGoogle Scholar
  2. 2.
    N. Brodusch, H. Demers, A. Gellé, A. Moores, R. Gauvin, Electron energy-loss spectroscopy (EELS) with a cold-field emission scanning electron microscope at low accelerating voltage in transmission mode. Ultramicroscopy 203(Dec. 2018), 21–36 (2019)CrossRefGoogle Scholar
  3. 3.
    P. Mølgaard Mortensen, T.W. Hansen, J. Birkedal Wagner, A. Degn Jensen, Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics. Ultramicroscopy 152, 1–9 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Gomès, A. Assy, P.O. Chapuis, Scanning thermal microscopy: a review. Phys. Status Solidi A Appl. Mater. Sci. 212(3), 477–494 (2015)CrossRefGoogle Scholar
  5. 5.
    K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M.T. Homer Reid, F.J. García-Vidal, J.C. Cuevas, E. Meyhofer, P. Reddy, Radiative heat transfer in the extreme near field. Nature 528(7582), 387–391 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, M. Xingsen, S. Shen, W. Zhang, Heat transfer characteristics of steam condensation flow in vacuum horizontal tube. Int. J. Heat Mass Transf. 108, 128–135 (2017)CrossRefGoogle Scholar
  7. 7.
    S.H. Choi, Thermal type seawater desalination with barometric vacuum and solar energy. Energy 141, 1332–1349 (2017)CrossRefGoogle Scholar
  8. 8.
    N. Myneni, A. Date, M. Ward, P. Gokhale, M. Gay, Combined thermoelectric power generation and passive vacuum desalination. Energy Procedia 110(December 2016), 262–267 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Ruan, J. Huang, B. Qin, L. Dong, Heat transfer in vacuum pyrolysis of decomposing hazardous plastic wastes. ACS Sustain. Chem. Eng. 6(4), 5424–5430 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, D. Huang, W. Jiang, G. Zha, J. Deng, P. Deng, X. Kong, D. Liu, Selective separation and recovery of rare metals by vulcanization-vacuum distillation of cadmium telluride waste. Sep. Purif. Technol. 230(July 2019), 115864 (2020)CrossRefGoogle Scholar
  11. 11.
    L.E. Juanicó, Modified vacuum tubes for overheating limitation of solar collectors: a dynamical modeling approach. Solar Energy 171(July), 804–810 (2018)CrossRefGoogle Scholar
  12. 12.
    T.Y. Wang, Y.H. Zhao, Y.H. Diao, R.Y. Ren, Z.Y. Wang, Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays. Energy 177, 16–28 (2019)CrossRefGoogle Scholar
  13. 13.
    X. Huang, Q. Wang, H. Yang, S. Zhong, D. Jiao, K. Zhang, M. Li, G. Pei, Theoretical and experimental studies of impacts of heat shields on heat pipe evacuated tube solar collector. Renew. Energy 138, 999–1009 (2019)CrossRefGoogle Scholar
  14. 14.
    C. Strauß, R. Gustus, W. Maus-Friedrichs, S. Schöler, U. Holländer, K. Möhwald, Influence of atmosphere during vacuum heat treatment of stainless steels AISI 304 and 446. J. Mater. Process. Technol. 264(August 2018), 1–9 (2019)CrossRefGoogle Scholar
  15. 15.
    M. Asemi, M. Ahmadi, M. Ghanaatshoar, Preparation of highly conducting Al-doped ZnO target by vacuum heat-treatment for thin film solar cell applications. Ceram. Int. 44(11), 12862–12868 (2018)CrossRefGoogle Scholar
  16. 16.
    T.M. Flynn, Cryogenic Engineering, 2nd edn. (CRC Press, Taylor & Francis Group, Louisville, CO, 2004)Google Scholar
  17. 17.
    J.P. Holman (ed.), Heat Transfer, McGraw-Hill Series in Mechanical Engineering, 10th edn. (McGraw-Hill Education, New York, 2009)Google Scholar
  18. 18.
    M. Martin, K. Holge, VDI Heat Atlas, 2nd edn. (Springer, Berlin, 2010)Google Scholar
  19. 19.
    M. Alam, H. Singh, M.C. Limbachiya, Vacuum insulation panels (vips) for building construction industry—a review of the contemporary developments and future directions. Appl. Energy 88(11), 3592–3602 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Sandá, S.L. Moya, L. Valenzuela, Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: a review. Renew. Sustain. Energy Rev. 113(June), 109226 (2019)CrossRefGoogle Scholar
  21. 21.
    S. Sobhansarbandi, P.M. Martinez, A. Papadimitratos, A. Zakhidov, F. Hassanipour, Evacuated tube solar collector with multifunctional absorber layers. Solar Energy 146, 342–350 (2017)CrossRefGoogle Scholar
  22. 22.
    H.J. Song, W. Zhang, Y.Q. Li, Z.W. Yang, A.B. Ming, Exergy analysis and parameter optimization of heat pipe receiver with integrated latent heat thermal energy storage for space station in charging process. Appl. Therm. Eng. 119, 304–311 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Yang, T. Caillat, Thermoelectric materials for space. MRS Bull. 31(3), 224–229 (2006)CrossRefGoogle Scholar
  24. 24.
    A.D. Kraus, A. Aziz, J. Welty, Extended Surface Heat Transfer (Wiley, Hoboken, 2001)Google Scholar
  25. 25.
    F. Hajabdollahi, H.H. Rafsanjani, Z. Hajabdollahi, Y. Hamidi, Multi-objective optimization of pin fin to determine the optimal fin geometry using genetic algorithm. Appl. Math. Model. 36(1), 244–254 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    H. Azarkish, S.M.H. Sarvari, A. Behzadmehr, Optimum design of a longitudinal fin array with convection and radiation heat transfer using a genetic algorithm. Int. J. Therm. Sci. 49(11), 2222–2229 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Das, Estimation of parameters in a fin with temperature-dependent thermal conductivity and radiation. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 230(6), 474–485 (2016)CrossRefGoogle Scholar
  28. 28.
    C. Wang, J. Chen, S. Qiu, W. Tian, D. Zhang, G.H. Su, Performance analysis of heat pipe radiator unit for space nuclear power reactor. Ann. Nucl. Energy 103, 74–84 (2017)CrossRefGoogle Scholar
  29. 29.
    J. Bouwmeester, J. Guo, Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology. Acta Astronaut. 67(7–8), 854–862 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Tolmasoff, C. Venturini, Improving mission success of cubeSats, in Proceedings of the U.S. Space Program Mission Assurance Improvement Workshop (El Segundo, CA, 2017)Google Scholar
  31. 31.
    C.A. Belk, J.H. Robinson, M.B. Alexander, W.J. Cooke, S.D. Pavelitz, Meteoroids and Orbital Debris: Effects on Spacecraft, Technical Report, NASA Marshall Space Flight Cente, Huntsville, AL (1997)Google Scholar
  32. 32.
    S.B. Khan, A. Francesconi, C. Giacomuzzo, E.C. Lorenzini, Survivability to orbital debris of tape tethers for end-of-life spacecraft de-orbiting. Aerosp. Sci. Technol. 52, 167–172 (2016)CrossRefGoogle Scholar
  33. 33.
    T. Maury, P. Loubet, M. Trisolini, A. Gallice, G. Sonnemann, C. Colombo, Assessing the impact of space debris on orbital resource in life cycle assessment: a proposed method and case study. Sci. Total Environ. 667, 780–791 (2019)CrossRefGoogle Scholar
  34. 34.
    S. Lee, A. Hutputanasin, A. Toorian, W. Lan, R. Munakata, J. Carnahan, D. Pignatelli, A. Mehrparvar. CubeSat Design Specification Rev. 13, (2014)Google Scholar
  35. 35.
    D.G. Gilmore, Spacecraft Thermal Control Handbook, 2nd edn. (Aerospace Press, El Segundo, CA, 2002)Google Scholar
  36. 36.
    R. Kovács, V. Józsa, Thermal analysis of the SMOG-1 PocketQube satellite. Appl. Therm. Eng. 139, 506–513 (2018)CrossRefGoogle Scholar
  37. 37.
    W. Stenzel, A Sunny Outlook for NASA Kepler’s Second Light, Technical report, NASA Ames Research Center, Moffett Field, CA (2013)Google Scholar
  38. 38.
    N.D. Anh, N.N. Hieu, P.N. Chung, N.T. Ahn, Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization. Appl. Therm. Eng. 94, 607–614 (2016)CrossRefGoogle Scholar
  39. 39.
    M. Bonnici, P. Mollicone, M. Fenech, M.A. Azzopardi, Analytical and numerical models for thermal related design of a new pico-satellite. Appl. Therm. Eng. 159, 113908 (2019)CrossRefGoogle Scholar
  40. 40.
    A. Torres, D. Mishkinis, T. Kaya, Mathematical modeling of a new satellite thermal architecture system connecting the east and west radiator panels and flight performance prediction. Appl. Therm. Eng. 65(1–2), 623–632 (2014)CrossRefGoogle Scholar
  41. 41.
    S. Corpino, M. Caldera, F. Nichele, M. Masoero, N. Viola, Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronaut. 115, 247–261 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Energy Engineering, Faculty of Mechanical EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations