Applications in Renewable Energy

  • Viktor JózsaEmail author
  • Róbert Kovács
Part of the Power Systems book series (POWSYS)


We are living in the age of the energy crisis. To survive ourselves, it is crucial to find highly efficient technologies and change from the current fossil fuel-heavy energy mix to renewable-based energy generation. The present chapter highlights three main fields: solar and wind energy utilization and combustion. Then the last section briefly discusses the building blocks of thermal power cycles. These selected topics provide a versatile knowledge to the reader to identify the waste heat sources and find a proper solution that harvests it. Each of the first three sections features a deeply discussed, solved thermal problem, and the last section includes the key equations to allow the reader to perform initial calculations on the key components of a thermal cycle.


Solar cell Solar collector Wind turbine Renewable Combustion Heat engine Organic rankine cycle 


  1. 1.
    U. Lohmann, J. Feichter, Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005)CrossRefGoogle Scholar
  2. 2.
    T. Wheeler, J. Von Braun, Climate change impacts on global food security. Science 341(6145), 508–513 (2013)CrossRefGoogle Scholar
  3. 3.
    M.P. McCarthy, M.J. Best, R.A. Betts, Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. 37(9), 1–5 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Dai, Drought under global warming: a review. Wiley Interdiscip. Rev.: Clim. Change 2(1), 45–65 (2011)Google Scholar
  5. 5.
    J.A. Church, N.J. White, A 20th Century Acceleration in Global Sea-Level Rise (2006)Google Scholar
  6. 6.
    M.D. Flannigan, M.A. Krawchuk, W.J. De Groot, B.M. Wotton, L.M. Gowman, Implications of changing climate for global wildland fire. Int. J Wildland Fire, 18(5), 483–507 (2009)Google Scholar
  7. 7.
    R.A. Pielke, C. Landsea, M. Mayfield, J. Laver, R. Pasch, Hurricanes and global warming. Bull. Am. Meteorol. Soc. 86(11), 1571–1575 (2005)CrossRefGoogle Scholar
  8. 8.
    W.R. Cline, The Economics of Global Warming (Peterson Institute for International Economics, Washington, D.C., 1992)Google Scholar
  9. 9.
    M.M. Mekonnen, P.W. Gerbens-Leenes, A. Y. Hoekstra, Future electricity: the challenge of reducing both carbon and water footprint. Sci. Total Environ. 569–570, 1282–1288 (2016)CrossRefGoogle Scholar
  10. 10.
    N.E. Vaughan, T.M. Lenton, A review of climate geoengineering proposals. Clim. Change 109(3–4), 745–790 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Sandá, S.L. Moya, L. Valenzuela, Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: a review. Renew. Sustain. Energy Rev. 113(June), 109226 (2019)CrossRefGoogle Scholar
  12. 12.
    F. Meneguzzo, R. Ciriminna, L. Albanese, M. Pagliaro, The great solar boom: a global perspective into the far reaching impact of an unexpected energy revolution. Energy Sci. Eng. 3(6), 499–509 (2015)CrossRefGoogle Scholar
  13. 13.
    R. Ciriminna, F. Meneguzzo, M. Pecoraino, M. Pagliaro, Rethinking solar energy education on the dawn of the solar economy. Renew. Sustain. Energy Rev. 63, 13–18 (2016)CrossRefGoogle Scholar
  14. 14.
    Z. Dobrotkova, K. Surana, P. Audinet, The price of solar energy: comparing competitive auctions for utility-scale solar PV in developing countries. Energy Policy 118(Jan), 133–148 (2018)CrossRefGoogle Scholar
  15. 15.
    R.Y. Shum. Heliopolitics : the international political economy of solar supply chains. Energy Strateg. Rev. 26(June 2019), 100390 (2020)CrossRefGoogle Scholar
  16. 16.
    G.F. Nemet, E. O’Shaughnessy, R. Wiser, N. Darghouth, G. Barbose, K. Gillingham, V. Rai, Characteristics of low-priced solar PV systems in the U.S. Appl. Energy, 187, 501–513 (2017)CrossRefGoogle Scholar
  17. 17.
    J.-E. Zafrilla, G. Arce, M.-Á. Cadarso, C. Córcoles, N. Gómez, L.-A. López, F. Monsalve, M.-Á. Tobarra, Triple bottom line analysis of the Spanish solar photovoltaic sector: a footprint assessment. Renew. Sustain. Energy Rev. 114(Feb), 109311 (2019)CrossRefGoogle Scholar
  18. 18.
    M.J. De Wild-Scholten, Energy payback time and carbon footprint of commercial photovoltaic systems. Sol. Energy Mater. Sol. Cells 119, 296–305 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Perry, J. Klemeš, I. Bulatov, Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors. Energy 33(10), 1489–1497 (2008)CrossRefGoogle Scholar
  20. 20.
    V.M. Fthenakis, H.C. Kim, Greenhouse-gas emissions from solar electric- and nuclear power: a life-cycle study. Energy Policy 35(4), 2549–2557 (2007)CrossRefGoogle Scholar
  21. 21.
    V. Pranesh, R. Velraj, S. Christopher, V. Kumaresan, A 50 year review of basic and applied research in compound parabolic concentrating solar thermal collector for domestic and industrial applications. Sol. Energy 187(Apr), 293–340 (2019)CrossRefGoogle Scholar
  22. 22.
    L. Evangelisti, R. De Lieto Vollaro, F. Asdrubali, Latest advances on solar thermal collectors: a comprehensive review. Renew. Sustain. Energy Rev. 114, 109318 (2019)CrossRefGoogle Scholar
  23. 23.
    F. Bayrak, N. Abu-Hamdeh, K.A. Alnefaie, H.F. Öztop, A review on exergy analysis of solar electricity production. Renew. Sustain. Energy Rev. 74(June 2016), 755–770 (2017)CrossRefGoogle Scholar
  24. 24.
    H.A. Muhammed, S.A. Atrooshi, Modeling solar chimney for geometry optimization. Renew. Energy 138, 212–223 (2019)CrossRefGoogle Scholar
  25. 25.
    H.H. Al-Kayiem, O.C. Aja, Historic and recent progress in solar chimney power plant enhancing technologies. Renew. Sustain. Energy Rev. 58, 1269–1292 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Akbarzadeh, M.S. Valipour, Heat transfer enhancement in parabolic trough collectors: a comprehensive review. Renew. Sustain. Energy Rev. 92(Nov 2017), 198–218 (2018)CrossRefGoogle Scholar
  27. 27.
    G.K. Manikandan, S. Iniyan, R. Goic, Enhancing the optical and thermal efficiency of a parabolic trough collector—a review. Appl. Energy 235(Nov 2018), 1524–1540 (2019)CrossRefGoogle Scholar
  28. 28.
    F.J. Collado, J. Guallar, Quick design of regular heliostat fields for commercial solar tower power plants. Energy 178, 115–125 (2019)CrossRefGoogle Scholar
  29. 29.
    A.A. Hachicha, B.A.A. Yousef, Z. Said, I. Rodríguez, A review study on the modeling of high-temperature solar thermal collector systems. Renew. Sustain. Energy Rev. 112(June), 280–298 (2019)CrossRefGoogle Scholar
  30. 30.
    G. Srilakshmi, N.S. Suresh, N.C. Thirumalai, M.A. Ramaswamy, Preliminary design of heliostat field and performance analysis of solar tower plants with thermal storage and hybridisation. Sustain. Energy Technol. Assess. 19, 102–113 (2017)CrossRefGoogle Scholar
  31. 31.
    M.J. Wagner, W.T. Hamilton, A. Newman, J. Dent, C. Diep, R. Braun, Optimizing dispatch for a concentrated solar power tower. Sol. Energy 174(March), 1198–1211 (2018)CrossRefGoogle Scholar
  32. 32.
    E. Bellos, C. Tzivanidis, A. Papadopoulos, Daily, monthly and yearly performance of a linear Fresnel reflector. Sol. Energy 173(Nov 2017), 517–529 (2018)CrossRefGoogle Scholar
  33. 33.
    E. Bellos, C. Tzivanidis, M.A. Moghimi, Reducing the optical end losses of a linear Fresnel reflector using novel techniques. Sol. Energy 186(May), 247–256 (2019)CrossRefGoogle Scholar
  34. 34.
    E. Bellos, Progress in the design and the applications of linear Fresnel reflectors—a critical review. Therm. Sci. Eng. Prog. 10(Dec 2018), 112–137 (2019)CrossRefGoogle Scholar
  35. 35.
    L. Sun, C. Zong, Y. Liang, W. Huang, Evaluation of solar brightness distribution models for performance simulation and optimization of solar dish. Energy 180, 192–205 (2019)CrossRefGoogle Scholar
  36. 36.
    R. Karimi, T.T. Gheinani, V.M. Avargani, A detailed mathematical model for thermal performance analysis of a cylindrical cavity receiver in a solar parabolic dish collector system. Renew. Energy 125, 768–782 (2018)CrossRefGoogle Scholar
  37. 37.
    S. Pavlovic, R. Loni, E. Bellos, D. Vasiljević, G. Najafi, A. Kasaeian, Comparative study of spiral and conical cavity receivers for a solar dish collector. Energy Convers. Manag. 178(September), 111–122 (2018)CrossRefGoogle Scholar
  38. 38.
    S. Ghazi, A. Sayigh, K. Ip, Dust effect on flat surfaces—a review paper. Renew. Sustain. Energy Rev. 33, 742–751 (2014)CrossRefGoogle Scholar
  39. 39.
    D.R.H. Jones, Creep failures of overheated boiler, superheater and reformer tubes. Eng. Fail. Anal. 11(6), 873–893 (2004)CrossRefGoogle Scholar
  40. 40.
    A. Arjunwadkar, P. Basu, B. Acharya, A review of some operation and maintenance issues of CFBC boilers. Appl. Therm. Eng. 102, 672–694 (2016)CrossRefGoogle Scholar
  41. 41.
    A.L. Avila-Marin, J. Fernandez-Reche, A. Martinez-Tarifa, Modelling strategies for porous structures as solar receivers in central receiver systems: a review. Renew. Sustain. Energy Rev. 111(May), 15–33 (2019)CrossRefGoogle Scholar
  42. 42.
    A. Schmitt, F. Dinter, C. Reichel, Computational fluid dynamics study to reduce heat losses at the receiver of a solar tower plant. Sol. Energy 190(May), 286–300 (2019)CrossRefGoogle Scholar
  43. 43.
    W.Q. Wang, Y. Qiu, Mi.J. Li, F. Cao, Z.B. Liu, Optical efficiency improvement of solar power tower by employing and optimizing novel fin-like receivers. Energy Convers. Manag. 184(Dec 2018), 219–234 (2019)CrossRefGoogle Scholar
  44. 44.
    S. Kiwan, A.L. Khammash, Investigations into the spiral distribution of the heliostat field in solar central tower system. Sol. Energy 164(Feb), 25–37 (2018)CrossRefGoogle Scholar
  45. 45.
    M. Atif, F.A. Al-Sulaiman, Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm. Energy Convers. Manag. 95, 1–9 (2015)CrossRefGoogle Scholar
  46. 46.
    M.R. Rodríguez-Sánchez, A. Sánchez-González, D. Santana, Field-receiver model validation against Solar Two tests. Renew. Sustain. Energy Rev. 110(May 2018), 43–52 (2019)CrossRefGoogle Scholar
  47. 47.
    Lillyvilleky, Aluminum Can Solar Heater (2017)Google Scholar
  48. 48.
    Dr. Drashco, DIY Solar Panels: The Ultimate Building Guide (2019)Google Scholar
  49. 49.
    S. Karki, K.R. Haapala, B.M. Fronk, Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers. Appl. Energy 254(July), 113649 (2019)CrossRefGoogle Scholar
  50. 50.
    G. Faure, M. Vallée, C. Paulus, T.Q. Tran, Impact of faults on the efficiency curve of flat plate solar collectors: a numerical analysis. J. Clean. Prod. 231, 794–804 (2019)CrossRefGoogle Scholar
  51. 51.
    A. Fudholi, K. Sopian, A review of solar air flat plate collector for drying application. Renew. Sustain. Energy Rev. 102(Dec 2018), 333–345 (2019)CrossRefGoogle Scholar
  52. 52.
    V.V. Tyagi, N.L. Panwar, N.A. Rahim, R. Kothari, Review on solar air heating system with and without thermal energy storage system. Renew. Sustain. Energy Rev. 16(4), 2289–2303 (2012)CrossRefGoogle Scholar
  53. 53.
    S. Suman, M.K. Khan, M. Pathak, Performance enhancement of solar collectors—a review. Renew. Sustain. Energy Rev. 49, 192–210 (2015)CrossRefGoogle Scholar
  54. 54.
    R. Tang, W. Gao, Y. Yamei, H. Chen, Optimal tilt-angles of all-glass evacuated tube solar collectors. Energy 34(9), 1387–1395 (2009)CrossRefGoogle Scholar
  55. 55.
    E. Zambolin, D. Del Col, Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 84(8), 1382–1396 (2010)CrossRefGoogle Scholar
  56. 56.
    L.M. Ayompe, A. Duffy, M. Mc. Keever, M. Conlon, S.J. McCormack, Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate. Energy 36(5), 3370–3378 (2011)CrossRefGoogle Scholar
  57. 57.
    A. Ibrahim, M.Y. Othman, M.H. Ruslan, S. Mat, K. Sopian, Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renew. Sustain. Energy Rev. 15(1), 352–365 (2011)CrossRefGoogle Scholar
  58. 58.
    W. Pang, Y. Cui, Q. Zhang, Y. Hongwen, L. Zhang, H. Yan, Experimental effect of high mass flow rate and volume cooling on performance of a water-type PV/T collector. Sol. Energy 188(June), 1360–1368 (2019)CrossRefGoogle Scholar
  59. 59.
    M. Valizadeh, F. Sarhaddi, M. Adeli, Exergy performance assessment of a linear parabolic trough photovoltaic thermal collector. Renew. Energy 138, 1028–1041 (2019)CrossRefGoogle Scholar
  60. 60.
    M.A. Sharafeldin, G. Gróf, O. Mahian, Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids. Energy 141, 2436–2444 (2017)CrossRefGoogle Scholar
  61. 61.
    M.A. Sharafeldin, G. Gróf, Evacuated tube solar collector performance using CeO2/water nanofluid. J. Clean. Prod. 185, 347–356 (2018)CrossRefGoogle Scholar
  62. 62.
    K. Farhana, K. Kadirgama, M.M. Rahman, D. Ramasamy, M.M. Noor, G. Najafi, M. Samykano, A.S.F. Mahamude, Improvement in the performance of solar collectors with nanofluids—a state-of-the-art review. Nano-Struct. Nano-Objects 18 (2019)CrossRefGoogle Scholar
  63. 63.
    D. Wen, G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications. Particuology 7(2), 141–150 (2009)CrossRefGoogle Scholar
  64. 64.
    G. Colangelo, E. Favale, P. Miglietta, M. Milanese, A. de Risi, Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems. Energy 95, 124–136 (2016)CrossRefGoogle Scholar
  65. 65.
    M.E. Zayed, J. Zhao, Y. Du, A.E. Kabeel, S.M. Shalaby, Factors affecting the thermal performance of the flat plate solar collector using nanofluids: a review. Sol. Energy 182(Nov 2018), 382–396 (2019)CrossRefGoogle Scholar
  66. 66.
    J.H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, C.J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf. 51(11–12), 2651–2656 (2008)CrossRefGoogle Scholar
  67. 67.
    R. Bubbico, G.P. Celata, F. D’Annibale, B. Mazzarotta, C. Menale, Experimental analysis of corrosion and erosion phenomena on metal surfaces by nanofluids. Chem. Eng. Res. Des. 104, 605–614 (2015)CrossRefGoogle Scholar
  68. 68.
    M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)CrossRefGoogle Scholar
  69. 69.
    U. Pillai, Drivers of cost reduction in solar photovoltaics. Energy Econ. 50, 286–293 (2015)CrossRefGoogle Scholar
  70. 70.
    G. Kavlak, J. McNerney, J.E. Trancik, Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 123(October), 700–710 (2018)CrossRefGoogle Scholar
  71. 71.
    Y. Xu, J. Li, Q. Tan, A.L. Peters, C. Yang, Global status of recycling waste solar panels: a review. Waste Manag. 75, 450–458 (2018)CrossRefGoogle Scholar
  72. 72.
    B. Augustine, K. Remes, G.S. Lorite, J. Varghese, T. Fabritius, Recycling perovskite solar cells through inexpensive quality recovery and reuse of patterned indium tin oxide and substrates from expired devices by single solvent treatment. Sol. Energy Mater. Sol. Cells 194(January), 74–82 (2019)CrossRefGoogle Scholar
  73. 73.
    M. Fitra, I. Daut, M. Irwanto, N. Gomesh, Y.M. Irwan, TiO2 dye sensitized solar cells cathode using recycle battery. Energy Procedia 36, 333–340 (2013)CrossRefGoogle Scholar
  74. 74.
    A.M.K. Gustafsson, M.R.S.J. Foreman, C. Ekberg, Recycling of high purity selenium from CIGS solar cell waste materials. Waste Manag. 34(10), 1775–1782 (2014)CrossRefGoogle Scholar
  75. 75.
    W.H. Huang, W.J. Shin, L. Wang, W.C. Sun, M. Tao, Strategy and technology to recycle wafer-silicon solar modules. Sol. Energy 144, 22–31 (2017)CrossRefGoogle Scholar
  76. 76.
    P. Mandal, S. Sharma, Progress in plasmonic solar cell efficiency improvement: a status review. Renew Sustain. Energy Rev. 65, 537–552 (2016)CrossRefGoogle Scholar
  77. 77.
    M.K. Sahoo, P. Kale, Integration of silicon nanowires in solar cell structure for efficiency enhancement: a review. J. Materiomics 5(1), 34–48 (2019)CrossRefGoogle Scholar
  78. 78.
    D.G. Moon, S. Rehan, D.H. Yeon, S.M. Lee, S.J. Park, S.J. Ahn, Y.S. Cho, A review on binary metal sulfide heterojunction solar cells. Sol. Energy Mater. Sol Cells 200(May), 109963 (2019)CrossRefGoogle Scholar
  79. 79.
    M.S. Mozumder, A.H.I. Mourad, H. Pervez, R. Surkatti, Recent developments in multifunctional coatings for solar panel applications: a review. Sol. Energy Mater. Sol. Cells 189(June 2018), 75–102 (2019)CrossRefGoogle Scholar
  80. 80.
    Y. Galagan, E.W.C. Coenen, S. Sabik, H.H. Gorter, M. Barink, S.C. Veenstra, J.M. Kroon, R. Andriessen, P.W.M. Blom, Evaluation of ink-jet printed current collecting grids and busbars for ITO-free organic solar cells. Sol. Energy Mater. Sol. Cells 104, 32–38 (2012)CrossRefGoogle Scholar
  81. 81.
    B. Gerdes, M. Jehle, N. Lass, L. Riegger, A. Spribille, M. Linse, F. Clement, R. Zengerle, P. Koltay, Front side metallization of silicon solar cells by direct printing of molten metal. Sol. Energy Mater. Sol. Cells 180(February), 83–90 (2018)CrossRefGoogle Scholar
  82. 82.
    J.-M. Delgado-Sanchez, Solar Energy Materials and Solar Cells Luminescent solar concentrators: photo-stability analysis and long-term perspectives. Sol. Energy Mater. Sol. Cells 202(July), 110134 (2019)CrossRefGoogle Scholar
  83. 83.
    X. Cong, Z. Zhang, H. Yue, Y. Sheng, P. Jiang, H. Han, J. Zhang, Printed hole-conductor-free mesoscopic perovskite solar cells with excellent long-term stability using PEAI as an additive. J. Energy Chem. 27(3), 764–768 (2018)CrossRefGoogle Scholar
  84. 84.
    J. Maçaira, L. Andrade, A. Mendes, Laser sealed dye-sensitized solar cells: efficiency and long term stability. Sol. Energy Mater. Sol. Cells 157, 134–138 (2016)CrossRefGoogle Scholar
  85. 85.
    B. Wang, First Commercial Perovskite Solar Late in 2019 and the Road to Moving the Energy Needle (2019)Google Scholar
  86. 86.
    M.A. Mutalib, F. Aziz, A.F. Ismail, W.N.W. Salleh, N. Yusof, J. Jaafar, T. Soga, M.Z. Sahdan, N.A. Ludin, Towards high performance perovskite solar cells: a review of morphological control and HTM development. Appl. Mater. Today 13, 69–82 (2018)Google Scholar
  87. 87.
    D.J. Friedman, Progress and challenges for next-generation high-efficiency multijunction solar cells. Curr. Opin. Solid State Mater. Sci. 14(6), 131–138 (2010)CrossRefGoogle Scholar
  88. 88.
    Q. Wali, N.K. Elumalai, Y. Iqbal, A. Uddin, R. Jose (2018) Tandem perovskite solar cells. Renew Sustain Energy Rev. 84(Jan), 89–110 (2018)CrossRefGoogle Scholar
  89. 89.
    J. Day, S. Senthilarasu, T.K. Mallick, Improving spectral modification for applications in solar cells: a review. Renew. Energy 132, 186–205 (2019)CrossRefGoogle Scholar
  90. 90.
    P. Singh, N.M. Ravindra, Temperature dependence of solar cell performance—an analysis. Sol. Energy Mater. Sol. Cells 101, 36–45 (2012)CrossRefGoogle Scholar
  91. 91.
    A. Lozano-Medina, L. Manzano, J.D. Marcos, A.M. Blanco-Marigorta, Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria. Energy 183, 803–811 (2019)CrossRefGoogle Scholar
  92. 92.
    M. Ghorab, E. Entchev, L. Yang, Inclusive analysis and performance evaluation of solar domestic hot water system (a case study). Alex. Eng. J. 56(2), 201–212 (2017)CrossRefGoogle Scholar
  93. 93.
    S. Karki, K.R. Haapala, B.M. Fronk, Investigation of the combined efficiency of a solar/gas hybrid water heating system. Appl. Therm. Eng. 149(Sept 2018), 1035–1043 (2019)CrossRefGoogle Scholar
  94. 94.
    J.P. Holman (ed.), Heat Transfer. McGraw-Hil:l Series in Mechanical Engineering, 10th edn. (2009)Google Scholar
  95. 95.
    I. Subedi, T.J. Silverman, M.G. Deceglie, N.J. Podraza, Emissivity of solar cell cover glass calculated from infrared reflectance measurements. Sol. Energy Mater. Sol. Cells 190(Sept 2018), 98–102 (2019)CrossRefGoogle Scholar
  96. 96.
    M. Martin, K. Holge, VDI Heat Atlas, 2nd edn. (pringer, Berlin, 2010)Google Scholar
  97. 97.
    P. Hevia-Koch, J. Ladenburg, Where should wind energy be located? A review of preferences and visualisation approaches for wind turbine locations. Energy Res. Soc. Sci. 53(February), 23–33 (2019)CrossRefGoogle Scholar
  98. 98.
    M. Harper, B. Anderson, P.A.B. James, A.B.S. Bahaj, Onshore wind and the likelihood of planning acceptance: learning from a Great Britain context. Energy Policy 128(Dec 2018), 954–966 (2019)Google Scholar
  99. 99.
    K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M.T.H. Reid, F.J. García-Vidal, J.C. Cuevas, E. Meyhofer, P. Reddy, Radiative heat transfer in the extreme near field. Nature 528(7582), 387–391 (2015)CrossRefGoogle Scholar
  100. 100.
    P. Scherhaufer, S. Höltinger, B. Salak, T. Schauppenlehner, J. Schmidt, A participatory integrated assessment of the social acceptance of wind energy. Energy Res. Soc. Sci. 45(Nov 2017), 164–172 (2018)CrossRefGoogle Scholar
  101. 101.
    E. Nordman, J. Mutinda, Biodiversity and wind energy in Kenya: revealing landscape and wind turbine perceptions in the world’s wildlife capital. Energy Res. Soc. Sci. 19, 108–118 (2016)CrossRefGoogle Scholar
  102. 102.
    J.-S. Chou, O. Yu-Chen, K.-Y. Lin, Collapse mechanism and risk management of wind turbine tower in strong wind. J. Wind Eng. Ind. Aerodyn. 193(July), 103962 (2019)CrossRefGoogle Scholar
  103. 103.
    S.R. Brouwer, S.H.S. Al-Jibouri, I.C. Cárdenas, J.I.M. Halman, Towards analysing risks to public safety from wind turbines. Reliab. Eng. Syst. Saf. 180(Nov 2016), 77–87 (2018)CrossRefGoogle Scholar
  104. 104.
    F.O.M. Carneiro, H.H.B. Rocha, P.A.C. Rocha, Investigation of possible societal risk associated with wind power generation systems. Renew. Sustain. Energy Rev. 19, 30–36 (2013)Google Scholar
  105. 105.
    S. Deshmukh, S. Bhattacharya, A. Jain, A.R. Paul, Wind turbine noise and its mitigation techniques: a review. Energy Procedia 160(2018), 633–640 (2019)CrossRefGoogle Scholar
  106. 106.
    S.S. Rodrigues, A.C. Marta, On addressing wind turbine noise with after-market shape blade add-ons. Renew Energy 140, 602–614 (2019)CrossRefGoogle Scholar
  107. 107.
    L. Fredianelli, S. Carpita, G. Licitra, A procedure for deriving wind turbine noise limits by taking into account annoyance. Sci. Total Environ. 648, 728–736 (2019)CrossRefGoogle Scholar
  108. 108.
    E.V. Bräuner, J.T. Jørgensen, A.K. Duun-Henriksen, C. Backalarz, J.E. Laursen, T.H. Pedersen, M.K. Simonsen, Z.J. Andersen, Long-term wind turbine noise exposure and the risk of incident atrial fibrillation in the Danish Nurse cohort. Environ Int. 130(Mar), 104915 (2019)CrossRefGoogle Scholar
  109. 109.
    J. Chen, F. Wang, K.A. Stelson, A mathematical approach to minimizing the cost of energy for large utility wind turbines. Appl. Energy 228(June), 1413–1422 (2018)CrossRefGoogle Scholar
  110. 110.
    D. Song, J. Liu, J. Yang, M. Su, S. Yang, X. Yang, Y.H. Joo, Multi-objective energy-cost design optimization for the variable-speed wind turbine at high-altitude sites. Energy Convers. Manag. 196(Jan), 513–524 (2019)CrossRefGoogle Scholar
  111. 111.
    D. Lande-Sudall, T. Stallard, P. Stansby, Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation. Renew. Sustain. Energy Rev. 104(February), 492–503 (2019)CrossRefGoogle Scholar
  112. 112.
    P. Enevoldsen, F.H. Permien, I. Bakhtaoui, A.K. von Krauland, M.Z. Jacobson, G. Xydis, B.K. Sovacool, S.V. Valentine, D. Luecht, G. Oxley, How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas. Energy Policy, 132(Apr), 1092–1100 (2019)CrossRefGoogle Scholar
  113. 113.
    D.S. Ryberg, D.G. Caglayan, S. Schmitt, J. Linßen, D. Stolten, M. Robinius, Detailed distribution and simulation of advanced turbine designs. The future of European onshore wind energy potential. Energy 182, 1222–1238 (2019)CrossRefGoogle Scholar
  114. 114.
    A. Bahrami, A. Teimourian, C.O. Okoye, H. Shiri, Technical and economic analysis of wind energy potential in Uzbekistan. J. Clean. Prod. 223, 801–814 (2019)CrossRefGoogle Scholar
  115. 115.
    A.M. Kaynia, Seismic considerations in design of offshore wind turbines. Soil Dyn. Earthq. Eng. 124(Sept 2017), 399–407 (2019)CrossRefGoogle Scholar
  116. 116.
    B. Yeter, Y. Garbatov, C.G. Soares, Risk-based life-cycle assessment of offshore wind turbine support structures accounting for economic constraints. Struct. Saf. 81(June), 101867 (2019)CrossRefGoogle Scholar
  117. 117.
    X. Wu, Y. Hu, Y. Li, J. Yang, L. Duan, T. Wang, T. Adcock, Z. Jiang, Z. Gao, Z. Lin, A. Borthwick, S. Liao, Foundations of offshore wind turbines: a review. Renew. Sustain. Energy Rev. 104(Dec 2018), 379–393 (2019)CrossRefGoogle Scholar
  118. 118.
    Y. Zhao, Z. Cheng, P.C. Sandvik, Z. Gao, T. Moan, An integrated dynamic analysis method for simulating installation of single blades for wind turbines. Ocean Eng. 152(7491), 72–88 (2018)CrossRefGoogle Scholar
  119. 119.
    Z. Ren, R. Skjetne, Z. Jiang, Z. Gao, A.S. Verma, Integrated GNSS/IMU hub motion estimator for offshore wind turbine blade installation. Mech. Syst. Signal Process. 123, 222–243 (2019)CrossRefGoogle Scholar
  120. 120.
    B.R. Sarker, T.I. Faiz, Minimizing transportation and installation costs for turbines in offshore wind farms. Renew. Energy 101, 667–679 (2017)CrossRefGoogle Scholar
  121. 121.
    A.Z. Dhunny, Z. Allam, D. Lobine, M.R. Lollchund, Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective. Energy 185, 1282–1297 (2019)CrossRefGoogle Scholar
  122. 122.
    D. Ferreira, C. Freixo, J.A. Cabral, M. Santos, Is wind energy increasing the impact of socio-ecological change on Mediterranean mountain ecosystems? Insights from a modelling study relating wind power boost options with a declining species. J. Environ. Manag. 238(Feb), 283–295 (2019)CrossRefGoogle Scholar
  123. 123.
    K. Barré, I. Le Viol, Y. Bas, R. Julliard, C. Kerbiriou, Estimating habitat loss due to wind turbine avoidance by bats: implications for European siting guidance. Biolog. Conserv. 226(August), 205–214 (2018)CrossRefGoogle Scholar
  124. 124.
    K.F. Forbes, E.M. Zampelli, Wind energy, the price of carbon allowances, and CO2 emissions: evidence from Ireland. Energy Policy 133(July), 110871 (2019)CrossRefGoogle Scholar
  125. 125.
    E. Rusu, F. Onea, An assessment of the wind and wave power potential in the island environment. Energy 175, 830–846 (2019)CrossRefGoogle Scholar
  126. 126.
    M. Veigas, G. Iglesias, Wave and offshore wind potential for the island of Tenerife. Energy Convers. Manag. 76, 738–745 (2013)CrossRefGoogle Scholar
  127. 127.
    E.G. Sakka, D.V. Bilionis, D. Vamvatsikos, C.J. Gantes, Onshore wind farm siting prioritization based on investment profitability for Greece. Renew. Energy (2019)Google Scholar
  128. 128.
    G. Gualtieri, A novel method for wind farm layout optimization based on wind turbine selection. Energy Convers. Manag. 193(April), 106–123 (2019)CrossRefGoogle Scholar
  129. 129.
    H. Sun, H. Yang, X. Gao, Investigation into spacing restriction and layout optimization of wind farm with multiple types of wind turbines. Energy 168(2019), 637–650 (2019)Google Scholar
  130. 130.
    L. Wang, M.E. Cholette, Y. Zhou, J. Yuan, A.C.C. Tan, Y. Gu, Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization. Renew. Energy 126, 819–829 (2018)CrossRefGoogle Scholar
  131. 131.
    F. Haces-Fernandez, H. Li, D. Ramirez, Improving wind farm power output through deactivating selected wind turbines. Energy Convers. Manag. 187(March), 407–422 (2019)CrossRefGoogle Scholar
  132. 132.
    F. Toja-Silva, T. Kono, C. Peralta, O. Lopez-Garcia, J. Chen, A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation. J. Wind Eng. Ind. Aerodyn. 180(July), 66–87 (2018)CrossRefGoogle Scholar
  133. 133.
    F. Toja-Silva, C. Peralta, O. Lopez-Garcia, J. Navarro, I. Cruz, Roof region dependent wind potential assessment with different RANS turbulence models. J. Wind Eng. Ind. Aerodyn. 142, 258–271 (2015)CrossRefGoogle Scholar
  134. 134.
    I. Abohela, N. Hamza, S. Dudek, Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. Renew. Energy 50, 1106–1118 (2013)CrossRefGoogle Scholar
  135. 135.
    A.S. Yang, Y.M. Su, C.Y. Wen, Y.H. Juan, W.S. Wang, C.H. Cheng, Estimation of wind power generation in dense urban area. Appl. Energy 171, 213–230 (2016)CrossRefGoogle Scholar
  136. 136.
    S. Watson, A. Moro, V. Reis, C. Baniotopoulos, S. Barth, G. Bartoli, F. Bauer, E. Boelman, D. Bosse, A. Cherubini, A. Croce, L. Fagiano, M. Fontana, A. Gambier, K. Gkoumas, C. Golightly, M.I. Latour, P. Jamieson, J. Kaldellis, A. Macdonald, J. Murphy, M. Muskulus, F. Petrini, L. Pigolotti, F. Rasmussen, P. Schild, R. Schmehl, N. Stavridou, J. Tande, N. Taylor, T. Telsnig, R. Wiser, Future emerging technologies in the wind power sector: a European perspective. Renew. Sustain. Energy Rev. 113(June), 109270 (2019)CrossRefGoogle Scholar
  137. 137.
    J. Dai, W. Yang, J. Cao, D. Liu, X. Long, Ageing assessment of a wind turbine over time by interpreting wind farm SCADA data. Renew. Energy 116, 199–208 (2018)CrossRefGoogle Scholar
  138. 138.
    A.G. Alexandrov, V.N. Chestnov, V.A. Alexandrov, Identification based control for wind turbine. IFAC-PapersOnLine 50(1), 2272–2277 (2017)CrossRefGoogle Scholar
  139. 139.
    M. Narayana, K.M. Sunderland, G. Putrus, M.F. Conlon, Adaptive linear prediction for optimal control of wind turbines. Renew. Energy 113, 895–906 (2017)CrossRefGoogle Scholar
  140. 140.
    A. Azizi, H. Nourisola, S. Shoja-Majidabad, Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller. Renew. Energy 135, 55–65 (2019)CrossRefGoogle Scholar
  141. 141.
    M.G. Khalfallah, A.M. Koliub, Effect of dust on the performance of wind turbines. Desalination 209(1–3 SPEC ISS.), 209–220 (2007)CrossRefGoogle Scholar
  142. 142.
    E. Sagol, M. Reggio, A. Ilinca, Issues concerning roughness on wind turbine blades. Renew. Sustain. Energy Rev. 23, 514–525 (2013)CrossRefGoogle Scholar
  143. 143.
    A. González-González, D. Galar, Condition monitoring of wind turbine pitch controller: a maintenance approach. Measurement 123(January), 80–93 (2017)Google Scholar
  144. 144.
    M.L. Corradini, G. Ippoliti, G. Orlando, An observer-based blade-pitch controller of wind turbines in high wind speeds. Control Eng. Pract. 58(Feb 2016), 186–192 (2017)CrossRefGoogle Scholar
  145. 145.
    J. Lan, R.J. Patton, X. Zhu, Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation. Renew. Energy 116, 219–231 (2018)CrossRefGoogle Scholar
  146. 146.
    V. Irizar, C.S. Andreasen, Hydraulic pitch control system for wind turbines: advanced modeling and verification of an hydraulic accumulator. Simul. Model. Pract. Theory 79, 1–22 (2017)CrossRefGoogle Scholar
  147. 147.
    American Roller Bearing Company, Friction & Frequency Factors (2013)Google Scholar
  148. 148.
    ONYX InSight, Wind Turbine Fire due to Mechanical Failure (2018)Google Scholar
  149. 149.
    R. Brooks, Lessons Learned: common wind turbine bearing failures, costs & solutions, in 4th Wind Operations & Maintenance Canada 2017 Conference, Toronto (2017)Google Scholar
  150. 150.
    O. Tonks, Q. Wang, The detection of wind turbine shaft misalignment using temperature monitoring. CIRP J. Manuf. Sci. Technol. 17, 71–79 (2017)CrossRefGoogle Scholar
  151. 151.
    H. Polinder, F.F.A. Van Der Pijl, G.J. De Vilder, P.J. Tavner, Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans. Energy Convers. 21(3), 725–733 (2006)CrossRefGoogle Scholar
  152. 152.
    C.M.C.G. Fernandes, L. Blazquez, J. Sanesteban, R.C. Martins, J.H.O. Seabra, Energy efficiency tests in a full scale wind turbine gearbox. Tribol. Int. 101, 375–382 (2016)CrossRefGoogle Scholar
  153. 153.
    J.P. Salameh, S. Cauet, E. Etien, A. Sakout, L. Rambault, Gearbox condition monitoring in wind turbines: a review. Mech. Syst. Signal Process. 111, 251–264 (2018)CrossRefGoogle Scholar
  154. 154.
    S. Shanbr, F. Elasha, M. Elforjani, J. Teixeira, Detection of natural crack in wind turbine gearbox. Renew. Energy 118, 172–179 (2018)CrossRefGoogle Scholar
  155. 155.
    U. Bhardwaj, A.P. Teixeira, C.G. Soares, Reliability prediction of bearings of an offshore wind turbine gearbox in Advances in Renewable Energies Offshore—Proceedings of the 3rd International Conference on Renewable Energies Offshore, RENEW 2018 vol. 141, pp. 779–787 (2019)Google Scholar
  156. 156.
    W. Teng, X. Ding, Y. Zhang, Y. Liu, Z. Ma, Application of cyclic coherence function to bearing fault detection in a wind turbine generator under electromagnetic vibration. Mech. Syst. Signal Process. 87(June 2016), 279–293 (2017)CrossRefGoogle Scholar
  157. 157.
    J. Lloberas, A. Sumper, M. Sanmarti, X. Granados, A review of high temperature superconductors for offshore wind power synchronous generators (2014)CrossRefGoogle Scholar
  158. 158.
    W.C. Sant’Ana, C.P. Salomon, G. Lambert-Torres, L.E. Borges da Silva, E.L. Bonaldi, L.E. de Lacerda de Oliveira, J.G.B. da Silva, Early detection of insulation failures on electric generators through online Frequency Response Analysis. Electr. Power Syst. Res. 140, 337–343 (2016)Google Scholar
  159. 159.
    X. Jin, J. Wenbin, Z. Zhang, L. Guo, X. Yang, System safety analysis of large wind turbines. Renew. Sustain. Energy Rev. 56, 1293–1307 (2016)CrossRefGoogle Scholar
  160. 160.
    M.-Y. Cheng, Y.-F. Wu, Y.-W. Wu, S. Ndure, Fuzzy Bayesian schedule risk network for offshore wind turbine installation. Ocean Eng. 188(Dec 2018), 106238 (2019)CrossRefGoogle Scholar
  161. 161.
    X. Liu, L. Bo, H. Luo, Dynamical measurement system for wind turbine fatigue load. Renew. Energy 86, 909–921 (2016)CrossRefGoogle Scholar
  162. 162.
    Z. Fan, C. Zhu, The optimization and the application for the wind turbine power-wind speed curve. Renew. Energy 140, 52–61 (2019)CrossRefGoogle Scholar
  163. 163.
    The Royal Academy of Engineering, Wind Turbine Power Calculations. Technical report, RWE Npower Ltd. (2009)Google Scholar
  164. 164.
    K.A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution (Wiley-Vch, New York, NY, 1990)Google Scholar
  165. 165.
    W.C. Gardiner Jr. (ed.), Gas-Phase Combustion Chemistry, 2nd edn. (Springer, New York, Austin, TX, 2000)Google Scholar
  166. 166.
    T. Turányi, A.S. Tomlin, Analysis of Kinetic Reaction Mechanisms (Springer, Berlin, 2014)zbMATHCrossRefGoogle Scholar
  167. 167.
    T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 2nd edn. (Edwards Inc., Philadelphia, USA, 2005)Google Scholar
  168. 168.
    C.K. Law, Combustion Physics (Cambridge University Press, NJ, 2010)Google Scholar
  169. 169.
    T. Lieuwen, Unsteady Combustor Physics (Cambridge University Press, New York, NY, 2012)zbMATHCrossRefGoogle Scholar
  170. 170.
    R.J. Reed, North American Combustion Handbook, vol. 1, 3rd edn. (North American Mfg. Co., Claveland, OH, 1986)Google Scholar
  171. 171.
    R.J. Reed, North American Combustion Handbook, vol. 2, 3rd edn. (North American Mfg. Co., Cleveland, OH, 1997)Google Scholar
  172. 172.
    P. Basu, C. Kefa, L. Jestin, Boilers and Burners: Design and Theory (Springer, New York, NY, 2000)CrossRefGoogle Scholar
  173. 173.
    A.H. Lefebvre, D.R. Ballal, Gas Turbine Combustion, 3rd edn. (CRC Press, Boca Raton, 2010)CrossRefGoogle Scholar
  174. 174.
    N. Abas, A. Kalair, N. Khan, Review of fossil fuels and future energy technologies. Futures 69, 31–49 (2015)CrossRefGoogle Scholar
  175. 175.
    P. Bórawski, A. Bełdycka-Bórawska, E.J. Szymańska, K.J. Jankowski, B. Dubis, J.W. Dunn, Development of renewable energy sources market and biofuels in The European Union. J. Clean. Prod. 228, 467–484 (2019)CrossRefGoogle Scholar
  176. 176.
    T. Wilberforce, Z. El-Hassan, F.N. Khatib, A. Al Makky, A. Baroutaji, J.G. Carton, A.G. Olabi, Developments of electric cars and fuel cell hydrogen electric cars. Int. J. Hydrog. Energy 42(40), 25695–25734 (2017)CrossRefGoogle Scholar
  177. 177.
    J. Shin, W.S. Hwang, H. Choi, Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles. Technol. Forecast. Soc. Change 143(Jan), 239–248 (2019)CrossRefGoogle Scholar
  178. 178.
    M. Wang, R. Dewil, K. Maniatis, J. Wheeldon, T. Tan, J. Baeyens, Y. Fang, Biomass-derived aviation fuels: challenges and perspective. Prog. Energy Combust. Sci. 74, 31–49 (2019)CrossRefGoogle Scholar
  179. 179.
    H. Wei, W. Liu, X. Chen, Q. Yang, J. Li, H. Chen, Renewable bio-jet fuel production for aviation: a review (2019)Google Scholar
  180. 180.
    H.-G. Chen, Y.-H.P. Zhang, New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security. Renew. Sustain. Energy Rev. 47, 117–132 (2015)CrossRefGoogle Scholar
  181. 181.
    C. Zheng, Z. Liu (eds.), Oxy-Fuel Combustion: Fundamentals, Theory and Practice (Academic Press, 2018)Google Scholar
  182. 182.
    R. Prieler, P. Bělohradský, B. Mayr, A. Rinner, C. Hochenauer, Validation of turbulence/chemistry interaction models for use in Oxygen enhanced combustion. Energy Procedia 120, 548–555 (2017)CrossRefGoogle Scholar
  183. 183.
    F. Xing, A. Kumar, Y. Huang, S. Chan, C. Ruan, G. Sai, X. Fan, Flameless combustion with liquid fuel: a review focusing on fundamentals and gas turbine application. Appl. Energy 193, 28–51 (2017)CrossRefGoogle Scholar
  184. 184.
    A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power. Prog. Energy Combust. Sci. 69, 63–102 (2018)CrossRefGoogle Scholar
  185. 185.
    M.G. Božo, M.O. Vigueras-Zuniga, M. Buffi, T. Seljak, A. Valera-Medina, Fuel rich ammonia-hydrogen injection for humidified gas turbines. Appl. Energy 251(Dec 2018) (2019)Google Scholar
  186. 186.
    B. Anderhofstadt, S. Spinler, Factors affecting the purchasing decision and operation of alternative fuel-powered heavy-duty trucks in Germany–A Delphi study. Transport. Res. Part D: Transp. Environ. 73(Nov 2018):87–107, 2019CrossRefGoogle Scholar
  187. 187.
    J.M. Beér, N.A. Chigier, Combustion Aerodynamics (Robert E. Krieger Publishing Company Inc, London, 1972)Google Scholar
  188. 188.
    R. Borghi, Turbulent combustion modelling (1988)CrossRefGoogle Scholar
  189. 189.
    D. Veynante, L. Vervisch, Turbulent combustion modeling. Prog. Energy Combust. Sci. 28(3), 193–266 (2002)CrossRefGoogle Scholar
  190. 190.
    E.D. Gonzalez-Juez, A.R. Kerstein, R. Ranjan, S. Menon, Advances and challenges in modeling high-speed turbulent combustion in propulsion systems. Prog. Energy Combust. Sci. 60, 26–67 (2017)Google Scholar
  191. 191.
    F.Q. Zhao, H. Hiroyasu, The applications of laser Rayleigh scattering to combustion diagnostics. Prog. Energy Combust. Sci. 19(6), 447–485 (1993)CrossRefGoogle Scholar
  192. 192.
    K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Combustion at the focus: laser diagnostics and control. Proc. Combust. Inst. 30(1), 89–123 (2005)CrossRefGoogle Scholar
  193. 193.
    R.S. Barlow, Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31I(1), 49–75 (2007)CrossRefGoogle Scholar
  194. 194.
    H.A. Michelsen, Probing soot formation, chemical and physical evolution, and oxidation: a review of in situ diagnostic techniques and needs. Proc. Combust. Inst. 36(1), 717–735 (2017)CrossRefGoogle Scholar
  195. 195.
    J. Jedelsky, M. Maly, N.P. del Corral, G. Wigley, L. Janackova, M. Jicha, Air–liquid interactions in a pressure-swirl spray. Int. J. Heat Mass Transf. 121, 788–804 (2018)CrossRefGoogle Scholar
  196. 196.
    Z. Petranović, W. Edelbauer, M. Vujanović, N. Duić, Modelling of spray and combustion processes by using the Eulerian multiphase approach and detailed chemical kinetics. Fuel 191, 25–35 (2017)CrossRefGoogle Scholar
  197. 197.
    A. Urbán, V. Józsa, A. Urbán, V. Józsa, A. Urbán, V. Józsa, Investigation of fuel atomization with density functions. Period. Polytech. Mech. Eng. 62(1), 33–41 (2018)CrossRefGoogle Scholar
  198. 198.
    D. Csemány, V. Józsa, Fuel Evaporation in an atmospheric premixed burner: sensitivity analysis and spray vaporization. Processes 5(4), 80 (2017)CrossRefGoogle Scholar
  199. 199.
    E. Filimonova, A. Bocharov, V. Bityurin, Influence of a non-equilibrium discharge impact on the low temperature combustion stage in the HCCI engine. Fuel 228, 309–322 (2018)CrossRefGoogle Scholar
  200. 200.
    X. Liu, Y. Sage Kokjohn, L.H. Wang, H. Li, M. Yao, A numerical investigation of the combustion kinetics of reactivity controlled compression ignition (RCCI) combustion in an optical engine. Fuel 241, 753–766 (2019)CrossRefGoogle Scholar
  201. 201.
    T. Pachiannan, W. Zhong, S. Rajkumar, Z. He, X. Leng, Q. Wang, A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies (2019)Google Scholar
  202. 202.
    National Institute of Standards and Technology, Material Measurement Laboratory (2019).
  203. 203.
    I. Glassman, R. Yetter, Combustion, 4th edn. (Academic Press, Burlington, 2008)Google Scholar
  204. 204.
    S. Tsuboi, S. Miyokawa, M. Matsuda, T. Yokomori, N. Iida, Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine. Appl. Energy 250(January), 617–632 (2019)CrossRefGoogle Scholar
  205. 205.
    P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 67, 31–68 (2018)CrossRefGoogle Scholar
  206. 206.
    I.M. Kennedy, Models of soot formation and oxidation. Prog. Energy Combust. Sci. 23(2), 95–132 (1997)CrossRefGoogle Scholar
  207. 207.
    A.E. Karataş, Ö.L. Gülder, Soot formation in high pressure laminar diffusion flames. Prog. Energy Combust. Sci. 38(6), 818–845 (2012)CrossRefGoogle Scholar
  208. 208.
    Y. Wang, S.H. Chung, Soot formation in laminar counterflow flames. Prog. Energy Combust. Sci. 74, 152–238 (2019)CrossRefGoogle Scholar
  209. 209.
    S.M. Correa, A review of NOx formation under gas-turbine combustion conditions. Combust. Sci. Technol. 87(1–6), 329–362 (1993)CrossRefGoogle Scholar
  210. 210.
    A.G. Gaydon, The Spectroscopy of Flames, 2nd edn. (Chapman and Hall Ltd., London, 1974)CrossRefGoogle Scholar
  211. 211.
    V. Józsa, A. Kun-balog, Spectroscopic analysis of crude rapeseed oil flame. Fuel Process. Technol. 139, 61–66 (2015)CrossRefGoogle Scholar
  212. 212.
    C.T. Chong, M.-C. Chiong, J.-H. Ng, M. Lim, M.-V. Tran, A. Valera-Medina, W.W.F. Chong, Oxygenated sunflower biodiesel: spectroscopic and emissions quantification under reacting swirl spray conditions. Energy 178, 804–813 (2019)CrossRefGoogle Scholar
  213. 213.
    U. Maas, S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(3–4), 239–264 (1992)CrossRefGoogle Scholar
  214. 214.
    ANSYS Inc. ANSYS Fluent Theory Guide 2019 R2 (2019)Google Scholar
  215. 215.
    S.A. Channiwala, P.P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8), 1051–1063 (2002)CrossRefGoogle Scholar
  216. 216.
    Y. Shi, X. Zhang, F. Li, L. Ma, Engineering acid dew temperature: the limitation for flue gas heat recovery. Chin. Sci. Bull. 59(33), 4418–4425 (2014)CrossRefGoogle Scholar
  217. 217.
    A.P. Rossiter, B.P. Jones (eds.), Energy Management and Efficiency for the Process Industries (Wiley, 2015)Google Scholar
  218. 218.
    H. Struchtrup, Thermodyn. Energy Convers. (Springer, Heidelberg, 2014)Google Scholar
  219. 219.
    B. Kılkış, Ş. Kılkłş, New exergy metrics for energy, environment, and economy nexus and optimum design model for nearly-zero exergy airport (nZEXAP) systems. Energy 140, 1329–1349 (2017)CrossRefGoogle Scholar
  220. 220.
    C. Michalakakis, J.M. Cullen, A.G. Hernandez, B. Hallmark, Exergy and network analysis of chemical sites. Sustain. Prod. Consum. 1–19 (2019)Google Scholar
  221. 221.
    Y. Huang, V. Yang, Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35(4), 293–364 (2009)CrossRefGoogle Scholar
  222. 222.
    W. Meier, X.R. Duan, P. Weigand, Investigations of swirl flames in a gas turbine model combustor, II. Turbulence-chemistry interactions. Combust. Flame 144(1–2), 225–236 (2006)CrossRefGoogle Scholar
  223. 223.
    S. Taamallah, Z.A. LaBry, S.J. Shanbhogue, M.A.M. Habib, A.F. Ghoniem, Correspondence between “Stable” flame macrostructure and thermo-acoustic instability in premixed swirl-stabilized turbulent combustion. J. Eng. Gas Turbines Power 137(7), 071505 (2015)Google Scholar
  224. 224.
    R.W. Francisco, A.A.M. Oliveira, Simultaneous measurement of the adiabatic flame velocity and overall activation energy using a flat flame burner and a flame asymptotic model. Exp. Therm. Fluid Sci. 90(Mar 2017), 174–185 (2018)CrossRefGoogle Scholar
  225. 225.
    X. Han, Z. Wang, S. Wang, R. Whiddon, Y. He, Y. Lv, A.A. Konnov, Parametrization of the temperature dependence of laminar burning velocity for methane and ethane flames. Fuel 239(Nov 2018), 1028–1037 (2019)CrossRefGoogle Scholar
  226. 226.
    A.A. Konnov, A. Mohammad, V.R. Kishore, N.I. Kim, C. Prathap, S. Kumar, A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures. Prog. Energy Combust. Sci. 68, 197–267, (2018)CrossRefGoogle Scholar
  227. 227.
    Bioenergy Advice, Composition of wood (2019)Google Scholar
  228. 228.
    S. Van Loo, J. Koppejan (eds.), The Handbook of Biomass Combustion and Co-firing (Routledge, London, 2008)Google Scholar
  229. 229.
    E. Fooladgar, P. Tóth, C. Duwig, Characterization of flameless combustion in a model gas turbine combustor using a novel post-processing tool. Combust. Flame 204, 356–367 (2019)CrossRefGoogle Scholar
  230. 230.
    A.A.V. Perpignan, A.G. Rao, D.J.E.M. Roekaerts, Flameless combustion and its potential towards gas turbines (2018)Google Scholar
  231. 231.
    K.I. Khidr, Y.A. Eldrainy, M.M. EL-Kassaby, Towards lower gas turbine emissions: flameless distributed combustion. Renew. Sustain. Energy Rev. 67, 1237–1266 (2017)CrossRefGoogle Scholar
  232. 232.
    R. Amirante, P. De Palma, E. Distaso, P. Tamburrano, Thermodynamic analysis of small-scale externally fired gas turbines and combined cycles using turbo-compound components for energy generation from solid biomass. Energy Convers. Manag. 166(April), 648–662 (2018)CrossRefGoogle Scholar
  233. 233.
    O. Olumayegun, M. Wang, G. Kelsall, Closed-cycle gas turbine for power generation: a state-of-the-art review. Fuel 180, 694–717 (2016)CrossRefGoogle Scholar
  234. 234.
    J. Sachdeva, O. Singh, Thermodynamic analysis of solar powered triple combined Brayton, Rankine and Organic Rankine Cycle for carbon free power. Renew. Energy 139(2019), 765–780 (2019)CrossRefGoogle Scholar
  235. 235.
    C. Bernardoni, M. Binotti, A. Giostri, Techno-economic analysis of closed OTEC cycles for power generation. Renew. Energy 132, 1018–1033 (2019)CrossRefGoogle Scholar
  236. 236.
    C. Breidenich, D. Magraw, A. Rowley, J.W. Rubin, The Kyoto protocol to the united nations framework convention on climate change. Am. J. Int. Law 92(2), 315 (1998)CrossRefGoogle Scholar
  237. 237.
    M. Yang, H. Zhang, Z. Meng, Y. Qin, Experimental study on R1234yf/R134a mixture (R513A) as R134a replacement in a domestic refrigerator. Appl. Therm. Eng. 146(Sept 2018), 540–547 (2019)CrossRefGoogle Scholar
  238. 238.
    V. Pethurajan, S. Sivan, G.C. Joy, Issues, comparisons, turbine selections and applications—an overview in Organic Rankine Cycle. Energy Convers. Manag. 166(March), 474–488 (2018)CrossRefGoogle Scholar
  239. 239.
    K.A. Abrosimov, A. Baccioli, A. Bischi, Techno-economic analysis of combined inverted Brayton-Organic Rankine Cycle for high-temperature waste heat recovery. Energy Convers. Manag.: X 3(June), 100014 (2019)Google Scholar
  240. 240.
    Q. Sun, Y. Wang, Z. Cheng, J. Wang, P. Zhao, Y. Dai, Thermodynamic optimization of a double-pressure Organic Rankine Cycle driven by geothermal heat source. Energy Procedia 129, 591–598 (2017)CrossRefGoogle Scholar
  241. 241.
    W.R. Huster, D. Bongartz, A. Mitsos, Deterministic global optimization of the design of a geothermal Organic Rankine Cycle. Energy Procedia 129, 50–57 (2017)CrossRefGoogle Scholar
  242. 242.
    S. Van Erdeweghe, J. Van Bael, B. Laenen, W. D’haeseleer, Design and off-design optimization procedure for low-temperature geothermal Organic Rankine Cycles. Appl. Energy 242(Feb), 716–731 (2019)Google Scholar
  243. 243.
    M. Ahmad, M. Schatz, M.V. Casey, Experimental investigation of droplet size influence on low pressure steam turbine blade erosion. Wear 303(1–2), 83–86 (2013)CrossRefGoogle Scholar
  244. 244.
    G. Györke, U.K. Deiters, A. Groniewsky, I. Lassu, A.R. Imre, Novel classification of pure working fluids for Organic Rankine Cycle. Energy 145, 288–300 (2018)CrossRefGoogle Scholar
  245. 245.
    A. Groniewsky, G. Györke, A.R. Imre, Description of wet-to-dry transition in model ORC working fluids. Appl. Therm. Eng. 125, 963–971 (2017)CrossRefGoogle Scholar
  246. 246.
    A. Groniewsky, A.R. Imre, Prediction of the ORC working fluid’s temperature-entropy saturation boundary using redlich-Kwong equation of state. Entropy 20(2), 1–8 (2018)CrossRefGoogle Scholar
  247. 247.
    A.R. Imre, R. Kustán, A. Groniewsky, Thermodynamic selection of the optimal working fluid for Organic Rankine Cycles. Energies 12(10), 1–15 (2019)CrossRefGoogle Scholar
  248. 248.
    Y. Zhao, G. Liu, L. Li, Q. Yang, B. Tang, Y. Liu, Expansion devices for Organic Rankine Cycle (ORC) using in low temperature heat recovery: a review. Energy Convers. Manag. 199(August), 111944 (2019)CrossRefGoogle Scholar
  249. 249.
    M. Saghafifar, A. Omar, K. Mohammadi, A. Alashkar, M. Gadalla, A review of unconventional bottoming cycles for waste heat recovery: Part I—analysis, design, and optimization. Energy Convers. Manag. 1–59 (2018)Google Scholar
  250. 250.
    A. Omar, M. Saghafifar, K. Mohammadi, A. Alashkar, M. Gadalla, A review of unconventional bottoming cycles for waste heat recovery: Part II—applications. Energy Convers. Manag. 180(Sept 2018), 559–583 (2019)CrossRefGoogle Scholar
  251. 251.
    W.B Nader, C. Mansour, C. Dumand, M. Nemer, Brayton cycles as waste heat recovery systems on series hybrid electric vehicles. Energy Convers. Manag. 168(Feb), 200–214 (2018)CrossRefGoogle Scholar
  252. 252.
    X. Li, H. Tian, G. Shu, M. Zhao, C.N. Markides, H. Chen, Potential of carbon dioxide transcritical power cycle waste-heat recovery systems for heavy-duty truck engines. Appl. Energy 250(May), 1581–1599 (2019)CrossRefGoogle Scholar
  253. 253.
    P. Liu, G. Shu, H. Tian, How to approach optimal practical Organic Rankine Cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery. Energy 174, 543–552 (2019)CrossRefGoogle Scholar
  254. 254.
    C. Falter, R. Pitz-Paal, Energy analysis of solar thermochemical fuel production pathway with a focus on waste heat recuperation and vacuum generation. Sol. Energy 176(September), 230–240 (2018)CrossRefGoogle Scholar
  255. 255.
    M. Awais, A.A. Bhuiyan, Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers. Int. J. Heat Mass Transf. 141, 580–603 (2019)CrossRefGoogle Scholar
  256. 256.
    E. Wallhäußer, M.A. Hussein, T. Becker, Detection methods of fouling in heat exchangers in the food industry. Food Control 27(1), 1–10 (2012)CrossRefGoogle Scholar
  257. 257.
    M.J. Li, S.Z. Tang, F.l. Wang, Q.X. Zhao, W.Q. Tao, Gas-side fouling, erosion and corrosion of heat exchangers for middle/low temperature waste heat utilization: a review on simulation and experiment. Appl. Therm. Eng. 126, 737–761 (2017)CrossRefGoogle Scholar
  258. 258.
    M. Trafczynski, M. Markowski, K. Urbaniec, Energy saving potential of a simple control strategy for heat exchanger network operation under fouling conditions. Renew. Sustain. Energy Rev. 111(May), 355–364 (2019)CrossRefGoogle Scholar
  259. 259.
    S.K. Singh, M. Mishra, P.K. Jha, Nonuniformities in compact heat exchangers—scope for better energy utilization: a review. Renew. Sustain. Energy Rev. 40, 583–596 (2014)CrossRefGoogle Scholar
  260. 260.
    S. Wang, Y. Xinquan, C. Liang, Y. Zhang, Enhanced condensation heat transfer in air-conditioner heat exchanger using superhydrophobic foils. Appl. Therm. Eng. 137(April), 758–766 (2018)CrossRefGoogle Scholar
  261. 261.
    L. Herraiz, D. Hogg, J. Cooper, M. Lucquiaud, Reducing the water usage of post-combustion capture systems: The role of water condensation/evaporation in rotary regenerative gas/gas heat exchangers. Appl. Energy 239(July 2018), 434–453 (2019)CrossRefGoogle Scholar
  262. 262.
    F. Chemat, N. Rombaut, A. Meullemiestre, M. Turk, S. Perino, A.S. Fabiano-Tixier, M. Abert-Vian, Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 41(May), 357–377 (2017)CrossRefGoogle Scholar
  263. 263.
    M.V.D. Bonis, G. Ruocco, Heat and mass transfer modeling during continuous flow processing of fluid food by direct steam injection. Int. Commun. Heat Mass Transf. 37(3), 239–244 (2010)CrossRefGoogle Scholar
  264. 264.
    L. Chen, Y.L. Liu, J.L. Deng, Removal of phthalic acid esters from sea buckthorn (Hippophae rhamnoides L.) pulp oil by steam distillation and molecular distillation. Food Chem. 294(May), 572–577 (2019)CrossRefGoogle Scholar
  265. 265.
    X. Meng, Z. Wen, Y. Qian, Y. Hongbing, Evaluation of cleaner production technology integration for the Chinese herbal medicine industry using carbon flow analysis. J. Clean. Prod. 163, 49–57 (2017)CrossRefGoogle Scholar
  266. 266.
    F. Memarzadeh, Adding amines to steam for humidification. J. Chem. Health Saf. 21(4), 5–17 (2014)CrossRefGoogle Scholar
  267. 267.
    V. Gorobets, Y. Bohdan, V. Trokhaniak, I. Antypov, Investigations of heat transfer and hydrodynamics in heat exchangers with compact arrangements of tubes. Appl. Therm. Eng. 151(Dec 2018), 46–54 (2019)CrossRefGoogle Scholar
  268. 268.
    T. Muszynski, The influence of microjet array area ratio on heat transfer in the compact heat exchanger. Exp. Therm. Fluid Sci. 99(July), 336–343 (2018)CrossRefGoogle Scholar
  269. 269.
    M. Awais, A.A. Bhuiyan, Heat and mass transfer for compact heat exchanger (CHXs) design: a state-of-the-art review. Int. J. Heat Mass Transf. 127, 359–380 (2018)CrossRefGoogle Scholar
  270. 270.
    H. Mroue, J.B. Ramos, L.C. Wrobel, H. Jouhara, Experimental and numerical investigation of an air-to-water heat pipe-based heat exchanger. Appl. Therm. Eng. 78, 339–350 (2015)CrossRefGoogle Scholar
  271. 271.
    J. Choi, M. Jeong, J. Yoo, M. Seo, A new CPU cooler design based on an active cooling heatsink combined with heat pipes. Appl. Therm. Eng. 44, 50–56 (2012)CrossRefGoogle Scholar
  272. 272.
    K.S. Kim, M.H. Won, J.W. Kim, B.J. Back, Heat pipe cooling technology for desktop PC CPU. Appl. Therm. Eng. 23(9 SPEC.), 1137–1144 (2003)CrossRefGoogle Scholar
  273. 273.
    G. Zhou, J. Li, L. Lv, An ultra-thin miniature loop heat pipe cooler for mobile electronics. Appl. Therm. Eng. 109, 514–523 (2016)CrossRefGoogle Scholar
  274. 274.
    H. Shabgard, M.J. Allen, N. Sharifi, S.P. Benn, A. Faghri, T.L. Bergman, Heat pipe heat exchangers and heat sinks: opportunities, challenges, applications, analysis, and state of the art. Int. J. Heat Mass Transf. 89, 138–158 (2015)CrossRefGoogle Scholar
  275. 275.
    C. Wang, J. Chen, S. Qiu, W. Tian, D. Zhang, G.H. Su, Performance analysis of heat pipe radiator unit for space nuclear power reactor. Ann. Nucl. Energy 103, 74–84 (2017)CrossRefGoogle Scholar
  276. 276.
    L. Ge, L. Huaqi, S. Jianqiang, Reliability and loading-following studies of a heat pipe cooled, AMTEC conversion space reactor power system. Ann. Nucl. Energy 130, 82–92 (2019)CrossRefGoogle Scholar
  277. 277.
    H.U. Oh, S. Shin, C.W. Baek, Thermal control of spaceborne image sensor using heat pipe cooling system. Aerosp. Sci. Technol. 29(1), 394–402 (2013)CrossRefGoogle Scholar
  278. 278.
    B. Zohuri, Heat Pipe Design and Technology, 2nd edn. (Springer International Publishing, 2016)Google Scholar
  279. 279.
    M. Liao, Z. He, C. Jiang, X. Fan, Y. Li, F. Qi, A three-dimensional model for thermoelectric generator and the influence of Peltier effect on the performance and heat transfer. Appl. Therm. Eng. 133(January), 493–500 (2018)CrossRefGoogle Scholar
  280. 280.
    R. Merienne, J. Lynn, E. McSweeney, S.M. O’Shaughnessy, Thermal cycling of thermoelectric generators: the effect of heating rate. Appl. Energy 237(Nov 2018), 671–681 (2019)CrossRefGoogle Scholar
  281. 281.
    P. Wang, J.E. Li, B.L. Wang, T. Shimada, H. Hirakata, C. Zhang, Lifetime prediction of thermoelectric devices under thermal cycling. J. Power Sources 437(June), 226861 (2019)CrossRefGoogle Scholar
  282. 282.
    J.W. Stevens, Optimal design of small \(\Delta \)T thermoelectric generation systems. Energy Convers. Manag. 42(6), 709–720 (2001)CrossRefGoogle Scholar
  283. 283.
    P. Wang, B.L. Wang, J.E. Li, Temperature and performance modeling of thermoelectric generators. Int. J. Heat Mass Transf. 143, 118509 (2019)CrossRefGoogle Scholar
  284. 284.
    A. Allouhi, Advances on solar thermal cogeneration processes based on thermoelectric devices: a review. Sol Energy Mater. Sol. Cells 200(May), 109954 (2019)CrossRefGoogle Scholar
  285. 285.
    A. Singha, Optimized Peltier cooling via an array of quantum dots with stair-like ground-state energy configuration. Phys. Lett. Section A: Gen. At. Solid State Phys. 382(41), 3026–3030 (2018)CrossRefGoogle Scholar
  286. 286.
    H.H. Saber, S.A. AlShehri, W. Maref, Performance optimization of cascaded and non-cascaded thermoelectric devices for cooling computer chips. Energy Convers. Manag. 191(April), 174–192 (2019)CrossRefGoogle Scholar
  287. 287.
    C. Lundgaard, O. Sigmund, Design of segmented thermoelectric Peltier coolers by topology optimization. Appl. Energy 239(July 2018), 1003–1013 (2019)CrossRefGoogle Scholar
  288. 288.
    Y. Lyu, A.R.M. Siddique, S.H. Majid, M. Biglarbegian, S.A. Gadsden, S. Mahmud, Electric vehicle battery thermal management system with thermoelectric cooling. Energy Rep. 5, 822–827 (2019)CrossRefGoogle Scholar
  289. 289.
    L. van Dommelen, Quantum Mechanics for Engineers (2018)Google Scholar
  290. 290.
    G. Lebon, D. Jou, Understanding Non-equilibrium Thermodynamics (Springer, Berlin, 2008)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Energy Engineering, Faculty of Mechanical EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations