The Way of Problem Solving in Thermal Engineering

  • Viktor JózsaEmail author
  • Róbert Kovács
Part of the Power Systems book series (POWSYS)


The role of the first chapter is the presentation of the toolbox of problem solving in detail. It can be used from your very first individual thermal project to your DSc degree in research or a group leader position in the industry. Hence, the focus here is on the way of thinking over direct problems. Before jumping into numerical modeling, several questions have to be answered. Even though each one seems obvious, nevertheless, neglecting them may significantly bias the calculation results. The second part of the chapter focuses on measurement data used for validation. It summarizes the fundamentals of sensor calibration and data uncertainty, also discussing the calculation of correlated quantities. However, these procedures often performed by technicians and engineers, it is crucial to know that the data measured by those sensors represent the quantity of interest with known uncertainty.


System identification Modeling Finite element method Uncertainty Calibration Material property estimation 


  1. 1.
    H. Struchtrup, Thermodynamics and Energy Conversion (Springer, Heidelberg, 2014)CrossRefGoogle Scholar
  2. 2.
    M. Martin, K. Holge (eds.), VDI Heat Atlas, 2nd edn. (Springer, Berlin, 2010)Google Scholar
  3. 3.
    M. Pȩkal, M. Wojtyra, J. Fra̧czek, Free-body-diagram method for the uniqueness analysis of reactions and driving forces in redundantly constrained multibody systems with nonholonomic constraints. Mech. Mach. Theory 133, 329–346 (2019)CrossRefGoogle Scholar
  4. 4.
    J. Kövecses, Dynamics of mechanical systems and the generalized free-body diagram-Part I: general formulation. J. Appl. Mech. 75(6), 061012 (2008)CrossRefGoogle Scholar
  5. 5.
    J.P. Barreto, A. Trigo, P. Menezes, J. Dias, A.T. De Almeida. FED-the free body diagram method. Kinematic and dynamic modeling of a six leg robot, in Proceedings of the 5th International Workshop on Advanced Motion Control (1998), pp. 423–428Google Scholar
  6. 6.
    H. Bao, N.T. Dinh, J.W. Lane, R.W. Youngblood, A data-driven framework for error estimation and mesh-model optimization in system-level thermal-hydraulic simulation. Nucl. Eng. Des. 349(February), 27–45 (2019)CrossRefGoogle Scholar
  7. 7.
    M. Cavazzuti, G. Gaspari, S. Pasquale, E. Stalio, Thermal management of a formula E electric motor: analysis and optimization. Appl. Therm. Eng. 157(March), 113733 (2019)CrossRefGoogle Scholar
  8. 8.
    M. Leśko, W. Bujalski, K. Futyma, Operational optimization in district heating systems with the use of thermal energy storage. Energy 165, 902–915 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Poole, R. Murray, S.M. Davidson, P.D. Docherty, The quadratic dimensional reduction method for parameter identification. Commun. Nonlinear Sci. Numer. Simul. 73, 425–436 (2019)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Wang, J. Huang, C. Su, H. Li, Furnace thermal efficiency modeling using an improved convolution neural network based on parameter-adaptive mnemonic enhancement optimization. Appl. Therm. Eng. 149(August 2018), 332–343 (2019)CrossRefGoogle Scholar
  11. 11.
    F. Ghani, R. Waser, T.S. O’Donovan, P. Schuetz, M. Zaglio, J. Wortischek, Non-linear system identification of a latent heat thermal energy storage system. Appl. Therm. Eng. 134(January), 585–593 (2018)CrossRefGoogle Scholar
  12. 12.
    X. Li, S. Lin, J. Zhang, T. Zhao, Model parameter identification of indoor temperature lag characteristic based on hysteresis relay feedback control in VAV systems. J. Build. Eng. 25(March), 100839 (2019)CrossRefGoogle Scholar
  13. 13.
    M. Baranski, J. Fütterer, D. Müller, Distributed exergy-based simulation-assisted control of HVAC supply chains. Energy Build. 175, 131–140 (2018)CrossRefGoogle Scholar
  14. 14.
    M.S. Murshitha Shajahan, D. Najumnissa Jamal, V. Aparna, Controller design using quantitative feedback theory for thermal power plant process. Case Stud. Therm. Eng. 14(April), 100441 (2019)CrossRefGoogle Scholar
  15. 15.
    A. López, W. Nicholls, M.T. Stickland, W.M. Dempster, CFD study of Jet Impingement Test erosion using Ansys Fluent® and OpenFOAM®. Comput. Phys. Commun. 197, 88–95 (2015)CrossRefGoogle Scholar
  16. 16.
    G. Lomonaco, W. Borreani, M. Bruzzone, D. Chersola, G. Firpo, M. Osipenko, M. Palmero, F. Panza, M. Ripani, P. Saracco, C. Maria Viberti, Initial thermal-hydraulic assessment by OpenFOAM and FLUENT of a subcritical irradiation facility. Therm. Sci. Eng. Prog. 6(October 2017), 447–456 (2018)CrossRefGoogle Scholar
  17. 17.
    P. Olmeda, A. Tiseira, V. Dolz, L.M. García-Cuevas, Uncertainties in power computations in a turbocharger test bench. Meas. J. Int. Meas. Confed. 59, 363–371 (2015)CrossRefGoogle Scholar
  18. 18.
    H. Carstens, X. Xia, S. Yadavalli, Measurement uncertainty in energy monitoring: Present state of the art. Renew. Sustain. Energy Rev. 82(August 2017), 2791–2805 (2018)CrossRefGoogle Scholar
  19. 19.
    European Parliament. Directive 2004/22/EC on measuring instruments (2004)Google Scholar
  20. 20.
    J. Lansing, AGA-9 measurement of gas by multipath ultrasonic meters. Technical Report, SICK Maihak, Inc. (2007)Google Scholar
  21. 21.
    D.W. Waples, J.S. Waples, A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 2: Fluids and porous rocks. Nat. Resour. Res. 13(2), 123–130 (2004)CrossRefGoogle Scholar
  22. 22.
    D. Basak, R.A. Overfelt, D. Wang, Measurement of specific heat capacity and electrical resistivity of industrial alloys using pulse heating techniques. Int. J. Thermophys. 24(6), 1721–1733 (2003)CrossRefGoogle Scholar
  23. 23.
    B. Barbés, R. Páramo, E. Blanco, C. Casanova, Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J. Therm. Anal. Calorim. 115(2), 1883–1891 (2014)CrossRefGoogle Scholar
  24. 24.
    S.M. Sohel Murshed, Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids. Heat Transf. Eng. 33(8), 722–731 (2012)Google Scholar
  25. 25.
    B. Le Neindre, P. Desmarest, G. Lombardi, M. Kayser, G. Chalvignac, F. Gumerov, Y. Garrabos, Thermal conductivity of gaseous and liquid n-pentane. Fluid Phase Equilibria 460, 146–154 (2018)CrossRefGoogle Scholar
  26. 26.
    A. Palacios, L. Cong, M.E. Navarro, Y. Ding, C. Barreneche, Thermal conductivity measurement techniques for characterizing thermal energy storage materials - A review. Renew. Sustain. Energy Rev. 108(March), 32–52 (2019)CrossRefGoogle Scholar
  27. 27.
    R.M. Sarviya, V. Fuskele, Review on Thermal Conductivity of Nanofluids. Mater. Today Proc. 4(2), 4022–4031 (2017)Google Scholar
  28. 28.
    A. Lorenzati, S. Fantucci, A. Capozzoli, M. Perino, VIPs thermal conductivity measurement: test methods, limits and uncertainty. Energy Procedia 78, 418–423 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Pustogvar, A. Kulyakhtin, Sea ice density measurements. Methods and uncertainties. Cold Reg. Sci. Technol. 131, 46–52 (2016)CrossRefGoogle Scholar
  30. 30.
    W. Tian, Y. Heo, P. de Wilde, Z. Li, D. Yan, C. Soo Park, X. Feng, G. Augenbroe, A review of uncertainty analysis in building energy assessment. Renew. Sustain. Energy Rev. 93(January 2017), 285–301 (2018)CrossRefGoogle Scholar
  31. 31.
    M. Cable, Calibration: A Technician’s Guide (International Society of Automation, Durham, 2005)Google Scholar
  32. 32.
    J.K. Taylor, H.V. Oppermann, Handbook for the Quality Assurance of Metrological Measurements. (U.S. Department of Commerce, National Bureau of Standards, Gaithersburg, 1986)Google Scholar
  33. 33.
    P.L. Bonate, Approximate confidence intervals in calibration using the bootstrap. Anal. Chem. 65(10), 1367–1372 (1993)CrossRefGoogle Scholar
  34. 34.
    L.M. Schwartz, Nonlinear calibration. Anal. Chem. 49(13), 2062–2069 (1977)CrossRefGoogle Scholar
  35. 35.
    C.F. Dietrich, Uncertainty, Calibration and Probability, 2nd edn. (Taylor & Francis, Boca Raton, 1991)Google Scholar
  36. 36.
    H.W. Coleman, W.G. Steele, Experimentation, Validation, and Uncertainty Analysis for Engineers, 4th edn. (Wiley, New York, 2018)CrossRefGoogle Scholar
  37. 37.
    H. Joe, Dependence Modeling with Copulas (Chapman and Hall/CRC, Boca Raton, 2015)Google Scholar
  38. 38.
    Mathworks. Simulating Dependent Random Variables Using Copulas (2019)Google Scholar
  39. 39.
    National Institute of Standards and Technology, Material Measurement Laboratory (2019).
  40. 40.
    Dortmund Data Bank (DDB). www.ddbst.comGoogle Scholar
  41. 41.
    Engineering ToolBox, (2019)
  42. 42.
    B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids, 5th edn. (McGraw-Hill, New York, 2001)Google Scholar
  43. 43.
    D. Csemány, V. Józsa, Fuel evaporation in an atmospheric premixed burner: sensitivity analysis and spray vaporization. Processes 5(4), 80 (2017)CrossRefGoogle Scholar
  44. 44.
    C. Olm, T. Varga, É. Valkó, S. Hartl, C. Hasse, T. Turányi, Development of an ethanol combustion mechanism based on a hierarchical optimization approach. Int. J. Chem. Kinet. 48(8), 423–441 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Energy Engineering, Faculty of Mechanical EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations