Advertisement

Weighted K-Means Clustering with Observation Weight for Single-Cell Epigenomic Data

  • Wenyu Zhang
  • Jiaxuan Wangwu
  • Zhixiang LinEmail author
Chapter
  • 28 Downloads
Part of the Emerging Topics in Statistics and Biostatistics book series (ETSB)

Abstract

The recent advances in single-cell technologies have enabled us to profile genomic features at unprecedented resolution. Nowadays, we can measure multiple types of genomic features at single-cell resolution, including gene expression, protein-binding, methylation, and chromatin accessibility. One major goal in single-cell genomics is to identify and characterize novel cell types, and clustering methods are essential for this goal. The distinct characteristics in single-cell genomic datasets pose challenges for methodology development. In this work, we propose a weighted K-means algorithm. Through down-weighting cells with low sequencing depth, we show that the proposed algorithm can lead to improved detection of rare cell types in analyzing single-cell chromatin accessibility data. The weight of noisy cells is tuned adaptively. In addition, we incorporate sparsity constraints in our proposed method for simultaneous clustering and feature selection. We also evaluated our proposed methods through simulation studies.

Keywords

Single-cell genomics Single-cell chromatin accessibility data Rare cell types Weighted K-means clustering Sparse weighted K-means clustering 

References

  1. 1.
    The Human Cell Atlas Participants. (2017). Science forum: The human cell atlas. Elife, 6, e27041.CrossRefGoogle Scholar
  2. 2.
    Rotem, A., Ram, O., Shoresh, N., Sperling, R. A., Goren, A., Weitz, D. A., et al. (2015). Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nature Biotechnology, 33(11), 1165.CrossRefGoogle Scholar
  3. 3.
    Smallwood, S. A., Lee, H. J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., et al. (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nature Methods, 11(8), 817.CrossRefGoogle Scholar
  4. 4.
    Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., et al. (2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 523(7561), 486–490.CrossRefGoogle Scholar
  5. 5.
    Cusanovich, D. A., Daza, R., Adey, A., Pliner, H. A., Christiansen, L., Gunderson, K. L., et al. (2015). Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science, 348(6237), 910–914.CrossRefGoogle Scholar
  6. 6.
    Xu, C., & Su, Z. (2015). Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics, 31(12), 1974–1980CrossRefGoogle Scholar
  7. 7.
    Yau, C. (2016). pcaReduce: Hierarchical clustering of single cell transcriptional profiles. BMC Bioinformatics, 17(1), 140.Google Scholar
  8. 8.
    Grün, D., Muraro, M. J., Boisset, J. C., Wiebrands, K., Lyubimova, A., Dharmadhikari, G., et al. (2016). De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell, 19(2), 266–277.CrossRefGoogle Scholar
  9. 9.
    Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T., et al. (2017). SC3: Consensus clustering of single-cell RNA-seq data. Nature Methods, 14(5), 483.CrossRefGoogle Scholar
  10. 10.
    Lin, P., Troup, M., & Ho, J. W. (2017). CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biology, 18(1), 59.CrossRefGoogle Scholar
  11. 11.
    Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., & Batzoglou, S. (2017). Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nature Methods, 14(4), 414.CrossRefGoogle Scholar
  12. 12.
    Jiang, H., Sohn, L. L., Huang, H., & Chen, L. (2018). Single cell clustering based on cell-pair differentiability correlation and variance analysis. Bioinformatics, 34(21), 3684–3694.Google Scholar
  13. 13.
    Yang, Y., Huh, R., Culpepper, H. W., Lin, Y., Love, M. I., & Li, Y. (2018). SAFE-clustering: Single-cell aggregated (from Ensemble) clustering for single-cell RNA-seq data. Bioinformatics, 35(8), 1269–1277.CrossRefGoogle Scholar
  14. 14.
    Zhu, L., Lei, J., Devlin, B., Roeder, K. (2019). Semi-soft clustering of single cell data. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 466–471.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sun, Z., Wang, T., Deng, K., Wang, X. F., Lafyatis, R., Ding, Y., et al. (2017). DIMM-SC: A dirichlet mixture model for clustering droplet-based single cell transcriptomic data. Bioinformatics, 34(1), 139–146.CrossRefGoogle Scholar
  16. 16.
    Zamanighomi, M., Lin, Z., Daley, T., Chen, X., Duren, Z., Schep, A., et al. (2018). Unsupervised clustering and epigenetic classification of single cells. Nature Communications, 9(1), 2410.CrossRefGoogle Scholar
  17. 17.
    Makarenkov, V., & Legendre, P. (2001). Optimal variable weighting for ultrametric and additive trees and k-means partitioning: Methods and software. Journal of Classification, 18, 245–271.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Modha, D. S., & Spangler, W. S. (2003). Feature weighting in k-means clustering. Machine Learning, 52(3), 217–237.CrossRefGoogle Scholar
  19. 19.
    Huang, J. Z., Ng, M. K., Rong, H., & Li, Z. (2005). Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 657–68.CrossRefGoogle Scholar
  20. 20.
    Jing, L., Ng, M. K., & Huang, J. Z. (2007). An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engineering, 19, 1026–1041.CrossRefGoogle Scholar
  21. 21.
    Wu, F. X. (2008). Genetic weighted k-means algorithm for clustering large-scale gene expression data. BMC Bioinformatics, 9(Suppl. 6), S12.CrossRefGoogle Scholar
  22. 22.
    Amorim, R., & Mirkin, B. (2012). Minkowski metric, feature weighting and anomalous cluster initializing in k-means clustering. Pattern Recognition, 45, 1061–1075.CrossRefGoogle Scholar
  23. 23.
    Tseng, G. (2007). Penalized and weighted k-means for clustering with scattered objects and prior information in high-throughput biological data. Bioinformatics (Oxford, England), 23, 2247–55.CrossRefGoogle Scholar
  24. 24.
    Aloise, D., Deshpande, A., Hansen, P., & Popat, P. (2009). NP-hardness of Euclidean sum-of-squares clustering. Machine Learning, 75,(2), 245–248.CrossRefGoogle Scholar
  25. 25.
    Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108.zbMATHGoogle Scholar
  26. 26.
    Witten, D. M., & Tibshirani, R. (2010). A framework for feature selection in clustering. Journal of the American Statistical Association, 105(490), 713–726.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411–423.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Park, H., & Kim, H. (2007). Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23(12), 1495–1502.CrossRefGoogle Scholar
  29. 29.
    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 10(12), 1213.CrossRefGoogle Scholar
  30. 30.
    Buenrostro, J. D., Wu, B., Chang, H. Y., & Greenleaf, W. J. ATAC-seq: A method for assaying chromatin accessibility genome-wide. Current Protocols in Molecular Biology, 109(1), 21–29.Google Scholar
  31. 31.
    Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., et al. (2008). Model-based analysis of chip-seq (MACS). Genome Biology, 9(9), R137.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of StatisticsThe Chinese University of Hong KongSha TinHong Kong

Personalised recommendations