On the Total Amount of the Occupied Resources in the Multi-resource QS with Renewal Arrival Process

  • Anastasia GalileyskayaEmail author
  • Ekaterina Lisovskaya
  • Michele Pagano
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1109)


In this paper we analyse a multi-resource queueing system with renewal arrival process and arbitrary service time distribution. In more detail, we apply the dynamic screening method to obtain the asymptotic expression for the stationary probability distribution describing the process of the total volume of the occupied resource in the system. Finally we verify the goodness of the obtained Gaussian approximation by means of discrete event simulation.


Queuing system Asymptotic analysis method Arbitrary service time 


  1. 1.
    Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks of queues with different classes of customers. J. ACM 2(22), 248–260 (1975)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brown, L., Gans, N., Mandelbaum, A., Sakov, A.: Statistical analysis of a telephone call center. A queueing-science perspective. J. Am. Stat. Assoc. 100, 36–50 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lisovskaya, E., Moiseeva, S., Pagano, M.: Multiclass GI/GI/\(\infty \) queueing systems with random resource requirements. In: Dudin, A., Nazarov, A., Moiseev, A. (eds.) ITMM/WRQ -2018. CCIS, vol. 912, pp. 129–142. Springer, Cham (2018). Scholar
  4. 4.
    Moiseev, A., Nazarov, A.: Asymptotic analysis of the infinite-server queueing system with high-rate semi-Markov arrivals. In: 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp 507–513 (2014)Google Scholar
  5. 5.
    Moiseev, A., Nazarov, A.: Queueing network with hight-rate arrivals. Eur. J. Oper. Res. 254(1), 161–168 (2016)CrossRefGoogle Scholar
  6. 6.
    Naumov, V., Samouylov, K., Sopin, E., Andreev, S.: Two approaches to analysis of queuing systems with limited resources. In: Ultra-Modern Telecommunications and Control Systems and Workshops Proceedings, pp. 485–489 (2014)Google Scholar
  7. 7.
    Pankratova, E., Moiseeva, S.: Queueing system GI/GI/\(\infty \) with n types of customers. Commun. Comput. Inf. Sci. 564, 216–225 (2015)Google Scholar
  8. 8.
    Tikhonenko, O., Kempa, W.M.: Queue-size distribution in M/G/1-type system with bounded capacity and packet dropping. In: Dudin, A., Klimenok, V., Tsarenkov, G., Dudin, S. (eds.) BWWQT 2013. CCIS, vol. 356, pp. 177–186. Springer, Heidelberg (2013). Scholar
  9. 9.
    Tikhonenko, O., Kempa, W.M.: The generalization of AQM algorithms for queueing systems with bounded capacity. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7204, pp. 242–251. Springer, Heidelberg (2012). Scholar
  10. 10.
    Wang, R., Jouini, O., Benjaafar, S.: Service systems with finite and heterogeneous customer arrivals. Manuf. Serv. Oper. Manag. 3(16), 365–380 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Department of Information EngineeringUniversity of PisaPisaItaly

Personalised recommendations