Advertisement

Asymptotic Analysis of Retrial Queueing System M/GI/1 with Collisions and Impatient Calls

  • Elena DanilyukEmail author
  • Svetlana Moiseeva
  • Anatoly Nazarov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1109)

Abstract

In the paper, the retrial queueing system of M/GI/1 type with input Poison flow of events, collisions and impatient calls is considered. The delay time of calls in the orbit and the impatience time of calls in the orbit have exponential distribution. Service time on server is with any distribution function. Asymptotic analysis method is proposed for the solving problem of finding distribution of the number of calls in the orbit under a long delay of calls in orbit and long time patience of calls in the orbit condition. The theorem about the Gauss form of the asymptotic probability distribution of the number of calls in the orbit is formulated and proved. Numerical illustrations, results are also given.

Keywords

Retrial queueing system Collisions Impatient calls Asymptotic analysis 

Notes

Acknowledgments

This work is financially supported by the Russian Foundation for Basic Research according to the research project No. 19-41-703002.

References

  1. 1.
    Wilkinson, R.I.: Theories for toll traffic engineering in the USA. Bell Syst. Tech. J. 35(2), 421–507 (1956)CrossRefGoogle Scholar
  2. 2.
    Cohen, J.W.: Basic problems of telephone traffic and the influence of repeated calls. Philips Telecommun. Rev. 18(2), 49–100 (1957)Google Scholar
  3. 3.
    Gosztony, G.: Repeated call attempts and their effect on traffic engineering. Budavox Telecommun. Rev. 2, 16–26 (1976)Google Scholar
  4. 4.
    Elldin, A., Lind, G.: Elementary Telephone Traffic Theory. Ericsson Public Telecommunications, Stockholm (1971)Google Scholar
  5. 5.
    Artalejo, J.R., Gomez-Corral, A.: Retrial Queueing Systems. A Computational Approach. Springer, Stockholm (2008).  https://doi.org/10.1007/978-3-540-78725-9CrossRefzbMATHGoogle Scholar
  6. 6.
    Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman & Hall, London (1997)CrossRefGoogle Scholar
  7. 7.
    Artalejo, J.R., Falin, G.I.: Standard and retrial queueing systems: a comparative analysis. Rev. Mat. Complut. 15, 101–129 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Roszik, J., Sztrik, J., Kim, C.: Retrial queues in the performance modelling of cellular mobile networks using MOSEL. Int. J. Simul. 6, 38–47 (2005)Google Scholar
  9. 9.
    Aguir, S., Karaesmen, F., Askin, O.Z., Chauvet, F.: The impact of retrials on call center performance. OR Spektrum 26, 353–376 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Phung-Duc, T., Kawanishi, K.: An efficient method for performance analysis of blended call centres with redial. Asia-Pac. J. Oper. Res. 31(2), 1–39 (2014)zbMATHGoogle Scholar
  11. 11.
    Dudin, A.N., Klimenok, V.I.: Queueing system BMAP/G/1 with repeated calls. Math. Comput. Model. 30(3–4), 115–128 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Danilyuk, E.Y., Fedorova, E.A., Moiseeva, S.P.: Asymptotic analysis of an retrial queueing system M/M/1 with collisions and impatient calls. Autom. Remote Control 79(12), 2136–2146 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nazarov, A., Sztrik, J., Kvach, A.: Comparative analysis of methods of residual and elapsed service time in the study of the closed retrial queuing system M/GI/1//N with collision of the customers and unreliable server. In: Dudin, A., Nazarov, A., Kirpichnikov, A. (eds.) ITMM 2017. CCIS, vol. 800, pp. 97–110. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68069-9_8CrossRefzbMATHGoogle Scholar
  14. 14.
    Kim, J.: Retrial queueing system with collision and impatience. Commun. Korean Math. Soc. 4, 647–653 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bérczes, T., Sztrik, J., Tóth, Á., Nazarov, A.: Performance modeling of finite-source retrial queueing systems with collisions and non-reliable server using MOSEL. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2017. CCIS, vol. 700, pp. 248–258. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66836-9_21CrossRefGoogle Scholar
  16. 16.
    Vygovskaya, O., Danilyuk, E., Moiseeva, S.: Retrial queueing system of MMPP/M/2 type with impatient calls in the orbit. In: Dudin, A., Nazarov, A., Moiseev, A. (eds.) ITMM/WRQ-2018. CCIS, vol. 912, pp. 387–399. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97595-5_30CrossRefGoogle Scholar
  17. 17.
    Danilyuk, E., Vygoskaya, O., Moiseeva, S.: Retrial queue M/M/N with impatient customer in the orbit. In: Vishnevskiy, V.M., Kozyrev, D.V. (eds.) DCCN 2018. CCIS, vol. 919, pp. 493–504. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99447-5_42CrossRefGoogle Scholar
  18. 18.
    Yang, T., Posner, M., Templeton, J.: The M/G/1 retrial queue with non-persistent customers. Queueing Syst. 7(2), 209–218 (1990)CrossRefGoogle Scholar
  19. 19.
    Krishnamoorthy, A., Deepak, T.G., Joshua, V.C.: An M/G/1 retrial queue with non-persistent customers and orbital search. Stoch. Anal. Appl. 23, 975–997 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Martin, M., Artalejo, J.: Analysis of an M/G/1 queue with two types of impatient units. Adv. Appl. Probab. 27, 647–653 (1995)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kumar, M., Arumuganathan, R.: Performance analysis of single server retrial queue with general retrial time, impatient subscribers, two phases of service and Bernoulli schedule. Tamkang J. Sci. Eng. 13(2), 135–143 (2010)Google Scholar
  22. 22.
    Fedorova, E., Voytikov, K.: Retrial queue M/G/1 with impatient calls under heavy load condition. In: Dudin, A., Nazarov, A., Kirpichnikov, A. (eds.) ITMM 2017. CCIS, vol. 800, pp. 347–357. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68069-9_28CrossRefGoogle Scholar
  23. 23.
    Klimenok, V.I., Orlovsky, D.S., Dudin, A.N.: BMAP/PH/N system with impatient repeated calls. Asia-Pac. J. Oper. Res. 24(3), 293–312 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kim, C.S., Klimenok, V., Dudin, A.: Retrial queueing system with correlated input, finite buffer, and impatient customers. In: Dudin, A., De Turck, K. (eds.) ASMTA 2013. LNCS, vol. 7984, pp. 262–276. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39408-9_19CrossRefzbMATHGoogle Scholar
  25. 25.
    Dudin, A., Klimenok, V.: Retrial queue of BMAP/PH/N type with customers balking, impatience and non-persistence. In: 2013 Conference on Future Internet Communications (CFIC), pp. 1–6. IEEE (2013)Google Scholar
  26. 26.
    Lisovskaya, E., Moiseeva, S., Pagano, M.: Multiclass GI/GI/\(\infty \) queueing systems with random resource requirements. In: Dudin, A., Nazarov, A., Moiseev, A. (eds.) ITMM/WRQ-2018. CCIS, vol. 912, pp. 129–142. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97595-5_11CrossRefGoogle Scholar
  27. 27.
    Pankratova, E., Moiseeva, S.: Queueing system \(GI|GI|\infty \) with n types of customers. In: Dudin, A., Nazarov, A., Yakupov, R. (eds.) ITMM 2015. CCIS, vol. 564, pp. 216–225. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25861-4_19CrossRefGoogle Scholar
  28. 28.
    Decreusefond, L., Moyal, P.: Stochastic Modeling and Analysis of Telecom Networks. ISTE Ltd., London (2012)CrossRefGoogle Scholar
  29. 29.
    Nazarov, A., Baymeeva, G.: The \(M/GI/\infty \) system subject to semi-Markovian random environment. In: Dudin, A., Nazarov, A., Yakupov, R. (eds.) ITMM 2015. CCIS, vol. 564, pp. 128–140. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25861-4_11CrossRefGoogle Scholar
  30. 30.
    Stepanov, S.N.: Algorithms approximate design systems with repeated calls. Autom. Remote Control 44(1), 63–71 (1983)zbMATHGoogle Scholar
  31. 31.
    Nazarov, A.A., Lyubina, T.V.: The non-Markov dynamic RQ system with the incoming MMP flow of requests. Autom. Remote Control 74(7), 1132–1143 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Artalejo, J.R., Pozo, M.: Numerical calculation of the stationary distribution of the main multiserver retrial queue. Annu. Oper. Res. 116, 41–56 (2002)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Neuts, M.F., Rao, B.M.: Numerical investigation of a multiserver retrial model. Queueing Syst. 7(2), 169–189 (1990)CrossRefGoogle Scholar
  34. 34.
    Borovkov, A.A.: Asymptotic Methods in Queueing Theory. Wiley, New York (1984)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elena Danilyuk
    • 1
    Email author
  • Svetlana Moiseeva
    • 1
  • Anatoly Nazarov
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations