Advertisement

Resource Queueing System \(MMPP^{(2,\nu )}|GI_2|\infty \) with Parallel Service of Multiple Paired Customers

  • Tatiana Bushkova
  • Ekaterina Pavlova
  • Svetlana Rozhkova
  • Svetlana MoiseevaEmail author
  • Michele Pagano
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1109)

Abstract

The article proposes the method for investigating the heterogeneous queuing system of \(MMPP^{(2,\nu )}|GI_2|\infty \) type with resource splitting and parallel service. Each customer is characterized by a random total capacity which is independent of the service time. Based on the asymptotic analysis, it is possible to deduce the expressions for characteristic function of the process of the total amount of resource in two-service unit system. The mathematical models of this type could be of great interest in terms of application in telecommunication, for example, for modeling wireless network, enhancing the existing and designing new ones.

Keywords

Markov modulated Poisson process Infinite server Paired requests 

References

  1. 1.
    Moltchanov, D., et al.: Improving session continuity with bandwidth reservation in mmwave communications. IEEE Wirel. Commun. 8(1), 105–108 (2019)CrossRefGoogle Scholar
  2. 2.
    Kleinrock, L.: Resource allocation in computer systems and computer communication networks. In: IFIP Cong. Proc., pp. 11–18, North-Holland (1974)Google Scholar
  3. 3.
    Kelly, F.P.: Reversibility and Stochastic Networks, p. 630. Wiley, New York (1979)zbMATHGoogle Scholar
  4. 4.
    Ross, K.W.: Multiservice Loss Models for Broadband Telecommunication Networks, p. 343. Springer, Berlin (1995).  https://doi.org/10.1007/978-1-4471-2126-8CrossRefzbMATHGoogle Scholar
  5. 5.
    Ross, K.W., Liu, Y., Wu, D.: Modeling and analysis of multi-channel P2P live video systems. Proc. IEEE/ACM Trans. Netw. 18(4), 1063–6692 (2010)Google Scholar
  6. 6.
    Boussetta, K., Belyot, A.-L.: Multirate resource sharing for unicast and multicast connections. In: Tsang, D.H.K., Kühn, P.J. (eds.) Broadband Communications. ITIFIP, vol. 30, pp. 561–570. Springer, Boston, MA (2000).  https://doi.org/10.1007/978-0-387-35579-5_47CrossRefGoogle Scholar
  7. 7.
    Begishev, V., Samuylov, A., Moltchanov, D., Samouylov, K.: Modeling the process of dynamic resource sharing between LTE and NB-IoT services. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2017. CCIS, vol. 700, pp. 1–12. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66836-9_1CrossRefGoogle Scholar
  8. 8.
    Tikhonenko, O., Kempa, W.M.: The generalization of AQM algorithms for queueing systems with bounded capacity. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7204, pp. 242–251. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31500-8_25CrossRefGoogle Scholar
  9. 9.
    Tikhonenko, O., Kempa, W.M.: Queue-size distribution in M/G/1-type system with bounded capacity and packet dropping. In: Dudin, A., Klimenok, V., Tsarenkov, G., Dudin, S. (eds.) BWWQT 2013. CCIS, vol. 356, pp. 177–186. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35980-4_20CrossRefGoogle Scholar
  10. 10.
    Naumov, V.A., Samuilov, K.E., Samuilov, A.K.: On the total amount of resources occupied by serviced customers. Autom. Remote Control 77(8), 1419–1427 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Naumov, V.A., Samuilov, K.E.: Analysis of networks of the resource queuing systems. Autom. Remote Control 79(5), 822–829 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Paxson, V., Floyd, S.: Wide area traffic: the failure of Poisson modeling. IEEE/ACM Trans. Netw. 3(3), 226–244 (1995)CrossRefGoogle Scholar
  13. 13.
    Moiseev, A., Moiseeva, S., Lisovskaya, E.: Infinite-server queueing tandem with MMPP arrivals and random capacity of customers. In: Proceedings of 31st European Conference on Modelling and Simulation Proceedings, pp. 673–679 (2017)Google Scholar
  14. 14.
    Naumov, V., Samouylov, K., Samouylov, A.: Total amount of resources occupied by serviced customers. Autom. Remote Control 77(8), 1419–1427 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lisovskaya, E., Moiseeva, S., Pagano, M., Potatueva, V.: Study of the MMPP/GI/\(\infty \) queueing system with random customers’ capacities. Inf. Appl. 11(4), 111–119 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Tomsk Politechnic UniversityTomskRussia
  3. 3.University of PisaPisaItaly

Personalised recommendations