Advertisement

On the Busy Period in a Finite-Source Retrial Queue with Outgoing Calls

  • Velika DragievaEmail author
  • Tuan Phung-Duc
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1109)

Abstract

The main purpose of present paper is to study the busy period in one single-server, finite-source retrial queue with outgoing calls. The specific feature of this system is that the outgoing calls do not affect the customers in the system. This allows the model to be considered as a queue with two types of customers. The service times of incoming and the outgoing calls follow two distinct arbitrary distributions. We derive formulas for computing the Laplace-Stieltjes transform of the distribution of the busy period length and its first moment.

Keywords

Finite queues Retrials Outgoing calls Busy period 

References

  1. 1.
    Aguir, S., Karaesmen, E., Aksin, O., Chauvet, F.: The impact of retrials on call center performance. OR Spectr. 26, 353–376 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amador, J.: On the distribution of the successful and blocked events in retrial queues with finite number of sources. In: Proceedings of the 5th International Conference on Queueing Theory and Network Applications, pp. 15–22 (2010)Google Scholar
  3. 3.
    Artalejo, J., Gómez-Corral, A.: Retrial Queueing Systems: A Computational Approach. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Artalejo, J., Phung-Duc, T.: Markovian retrial queues with two way communication. J. Ind. Manag. Optim. 8, 781–806 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Artalejo, J., Phung-Duc, T.: Single server retrial queues with two way communication. Appl. Math. Model. 37, 1811–1822 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Balazsfalvi, G., Sztrik, J.: A tool for modeling distributed protocols. PIK 31(1), 39–44 (2008)Google Scholar
  7. 7.
    Biro, J., Bérczes, T., Korosi, A., Heszberger, Z., Sztrik, J.: Discriminatory processor sharing from optimization point of view. In: Dudin, A., De Turck, K. (eds.) ASMTA 2013. LNCS, vol. 7984, pp. 67–80. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39408-9_6CrossRefGoogle Scholar
  8. 8.
    Choi, B., Shin, Y.W., Ahn, W.C.: Retrial queues with collision arising from unslotted CSMA/CD protocol. Queueing Syst. 11(4), 335–356 (1992)CrossRefGoogle Scholar
  9. 9.
    Deslauriers, A., L’Ecuyer, P., Pichitlamken, J., Ingolfsson, A., Avramidis, A.: Markov chain models of a telephone call center with call blending. Comput. Oper. Res. 34, 1616–1645 (2007)CrossRefGoogle Scholar
  10. 10.
    Dragieva, V.: A finite source retrial queue: number of retrials. Commun. Stat. Theor. Methods 42(5), 812–829 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dragieva, V.: Steady state analysis of the M/G/1//N queue with orbit of blocked customers. Ann. Oper. Res. 247, 121–140 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dragieva, V., Phung-Duc, T.: Two-way communication M/M/1 retrial queue with server-orbit interaction. In: Proceedings of the 11th International Conference on Queueing Theory and Network Applications, 7 p. ACM Digital Library (2016).  https://doi.org/10.1145/3016032.3016049
  13. 13.
    Dragieva, V., Phung-Duc, T.: Two-way communication M/M/1//N retrial queue. In: Thomas, N., Forshaw, M. (eds.) ASMTA 2017. LNCS, vol. 10378, pp. 81–94. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61428-1_6CrossRefzbMATHGoogle Scholar
  14. 14.
    Dragieva, V., Phung-Duc, T.: An M/G/1//K retrial queue with outgoing calls. Proceedings of the 13th International Conference on Queueing Theory and Network Applications, QTNA 2018, Tsukuba, Japan, 25–27 July, pp. 9–13 (2018)Google Scholar
  15. 15.
    Gómez-Corral, A., Phung-Duc, T.: Retrial queues and related models. Ann. Oper. Res. 247(1), 1–2 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Falin, G.: Model of coupled switching in presence of recurrent calls. Eng. Cybern. Rev. 17, 53–59 (1979)zbMATHGoogle Scholar
  17. 17.
    Falin, G., Templeton, J.: Retrial Queues. Chapman and Hall, London (1997)CrossRefGoogle Scholar
  18. 18.
    Falin, G., Artalejo, J.: A finite source retrial queue. Eur. J. Oper. Res. 108, 409–424 (1998)CrossRefGoogle Scholar
  19. 19.
    Fiems, D., Phung-Duc, T.: Light-traffic analysis of random access systems without collisions. Ann. Oper. Res. (2017).  https://doi.org/10.1007/s10479-017-2636-7
  20. 20.
    Jain, R.: The Art of Computer Systems Performance Analysis. Wiley, New York (1991)zbMATHGoogle Scholar
  21. 21.
    Jaiswal, N.: Priority Queues. Academic Press, New York (1969)zbMATHGoogle Scholar
  22. 22.
    Janssens, G.: The quasi-random input queueing system with repeated attempts as a model for collision-avoidance star local area network. IEEE Trans. Commun. 45, 360–364 (1997)CrossRefGoogle Scholar
  23. 23.
    Kim, J., Kim, B.: A survey of retrial queueing systems. Ann. Oper. Res. 247(1), 3–36 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kuki, A., Sztrik, J., Tóth, Á., Bérczes, T.: A contribution to modeling two-way communication with retrial queueing systems. In: Dudin, A., Nazarov, A., Moiseev, A. (eds.) ITMM/WRQ -2018. CCIS, vol. 912, pp. 236–247. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97595-5_19CrossRefGoogle Scholar
  25. 25.
    Li, H., Yang, T.: A single server retrial queue with server vacations and a finite number of input sources. Eur. Oper. Res. 85, 149–160 (1995)CrossRefGoogle Scholar
  26. 26.
    Mehmet-Ali, M., Elhakeem, A., Hayes, J.: Traffic analysis of a local area network with star topology. IEEE Trans. Commun. 36, 703–712 (1988)CrossRefGoogle Scholar
  27. 27.
    Nazarov, A., Sztrik, J., Kvach, A.: Some features of a finite-source M/GI/1 retrial queuing system with collisions of customers. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2017. CCIS, vol. 700, pp. 186–200. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66836-9_16CrossRefzbMATHGoogle Scholar
  28. 28.
    Nazarov, A., Sztrik, J., Kvach, A.: Asymptotic sojourn time analysis of finite-source M/M/1 retrial queuing system with two-way communication. In: Dudin, A., Nazarov, A., Moiseev, A. (eds.) ITMM/WRQ -2018. CCIS, vol. 912, pp. 172–183. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97595-5_14CrossRefGoogle Scholar
  29. 29.
    Ohmura, H., Takahashi, Y.: An analysis of repeated call model with a finite number of sources. Electron. Commun. Jpn. 68, 112–121 (1985)CrossRefGoogle Scholar
  30. 30.
    Sakurai, H., Phung-Duc, T.: Two-way communication retrial queues with multiple types of outgoing calls. TOP 23, 466–492 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tran-Gia, P., Mandjes, M.: Modeling of customer retrial phenomenon in cellular mobile networks. IEEE J. Sel. Areas Commun. 15, 1406–1414 (1997)CrossRefGoogle Scholar
  32. 32.
    Van Do, T., Wochner, P., Berches, T., Sztrik, J.: A new finite-source queueing model for mobile cellular networks applying spectrum renting. Asia-Pac. J. Oper. Res. 31, 14400004 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wang, J., Zhao, L., Zhang, F.: Analysis of the finite source retrial queues with server breakdowns and repairs. J. Ind. Manag. Optim. 7(3), 655–676 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wang, J., Wang, F., Sztrick, J., Kuki, A.: Finite source retrial queue with two phase service. Int. J. Oper. Res. 3(4), 421–440 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, F., Wang, J.: Performance analysis of the retrial queues with finite number of sources and service interruption. J. Korean Stat. Soc. 42, 117–131 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of ForestrySofiaBulgaria
  2. 2.University of TsukubaTsukubaJapan

Personalised recommendations