Adaptive Near-Optimal Control Using Sliding Mode

  • Yinyan Zhang
  • Shuai LiEmail author
  • Xuefeng Zhou
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 265)


In this chapter, an adaptive near-optimal controller, which is inherently real time, is designed to tackle the contradictory between solution accuracy and solution speed for the optimal control of a general class of nonlinear systems with fully unknown parameters. The key technique in the presented adaptive near-optimal control is to design an auxiliary system with the aid of the sliding mode control concept to reconstruct the dynamics of the controlled nonlinear system. Based on the sliding-mode auxiliary system and approximation of the performance index, the presented controller guarantees asymptotic stability of the closed-system and asymptotic optimality of the performance index with time. Two illustrative examples and an application of the presented method to a van der Pol oscillator are presented to validate the efficacy of the presented adaptive near-optimal control. In addition, physical experiment results based on a DC motor are also presented to show the realizability, performance, and superiority of the presented method.


  1. 1.
    Liu, Y., Tong, S.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64, 70–75 (2016). FebMathSciNetzbMATHGoogle Scholar
  2. 2.
    Lai, G., Chen, C.L.P., Zhang, Y.: Adaptive asymptotic tracking control of uncertain nonlinear system with input quantization. Syst. Control Lett. 96, 23–29 (2016). OctMathSciNetCrossRefGoogle Scholar
  3. 3.
    Liu, Y., Gao, Y., Tong, S., Li, Y.: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24(1), 16–28 (2016). FebCrossRefGoogle Scholar
  4. 4.
    Liu, Y., Tong, S.: Adaptive fuzzy control for a class of unknown nonlinear dynamical systems. Fuzzy Set. Syst. 263(15), 49–70 (2015). MarMathSciNetCrossRefGoogle Scholar
  5. 5.
    Li, S., Chen, S., Liu, B., Li, Y., Liang, Y.: Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing 91, 1–10 (2012)Google Scholar
  6. 6.
    Li, S., Cui, H., Li, Y., Liu, B., Lou, Y.: Decentralized control of collaborative redundant manipulators with partial command coverage via locally connected recurrent neural networks. Neural Comput. Appl. 23(3), 1051–1060 (2013)Google Scholar
  7. 7.
    Jin, L., Zhang, Y., Li, S., Zhang, Y.: Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Trans. Ind. Electron. 63(11), 6978–6988 (2016)Google Scholar
  8. 8.
    Li, S., He, J., Li, Y., Rafique, M.U.: Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 415–426 (2017)MathSciNetGoogle Scholar
  9. 9.
    Jin, L., Li, S., La, H.M., Luo, X.: Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans. Ind. Electron. 64(6), 4710–4720 (2017)Google Scholar
  10. 10.
    Li, Y., Li, S., Hannaford, B.: A novel recurrent neural network for improving redundant manipulator motion planning completeness. In: ICRA, pp. 2956–2961 (2018)Google Scholar
  11. 11.
    Zhang, Y., Li, S.: A neural controller for image-based visual servoing of manipulators with physical constraints. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5419–5429 (2018)MathSciNetGoogle Scholar
  12. 12.
    Li, S., Zhou, M., Luo, X.: Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 4791–4801 (2018)MathSciNetGoogle Scholar
  13. 13.
    Li, S., Wang, H., Rafique, M.U.: A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1908–1918 (2018)MathSciNetGoogle Scholar
  14. 14.
    Jin, L., Li, S., Luo, X., Li, Y., Qin, B.: Neural dynamics for cooperative control of redundant robot manipulators. IEEE Trans. Ind. Inform. 14(9), 3812–3821 (2018)Google Scholar
  15. 15.
    Li, J., Zhang, Y., Li, S., Mao, M.: New discretization-formula-based zeroing dynamics for real-time tracking control of serial and parallel manipulators. IEEE Trans. Ind. Inf. 14(8), 3416–3425 (2018)CrossRefGoogle Scholar
  16. 16.
    Chen, D., Zhang, Y., Li, S.: Tracking control of robot manipulators with unknown models: a Jacobian-matrix-adaption method. IEEE Trans. Ind. Inf. 14(7), 3044–3053 (2018)CrossRefGoogle Scholar
  17. 17.
    Zhang, Y., Li, S., Gui, J., Luo, X.: Velocity-level control with compliance to acceleration-level constraints: a novel scheme for manipulator redundancy resolution. IEEE Trans. Ind. Inf. 14(3), 921–930 (2018)CrossRefGoogle Scholar
  18. 18.
    Xiao, L., Liao, B., Li, S., Zhang, Z., Ding, L., Jin, L.: Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator. IEEE Trans. Ind. Inf. 14(1), 98–105 (2018)CrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Chen, S., Li, S., Zhang, Z.: Adaptive projection neural network for kinematic control of redundant manipulators with unknown physical parameters. IEEE Trans. Ind. Electron. 65(6), 4909–4920 (2018)Google Scholar
  20. 20.
    Zhang, Z., Lin, Y., Li, S., Li, Y., Yu, Z., Luo, Y.: Tricriteria optimization-coordination motion of dual-redundant-robot manipulators for complex path planning. IEEE Trans. Control Syst. Tech. 26(4), 1345–1357 (2018)CrossRefGoogle Scholar
  21. 21.
    Jin, L., Li, S., Hu, B., Yi, C.: Dynamic neural networks aided distributed cooperative control of manipulators capable of different performance indices. Neurocomputing 291, 50–58 (2018)Google Scholar
  22. 22.
    Jin, L., Li, S., Yu, J., He, J.: Robot manipulator control using neural networks: a survey. Neurocomputing 285, 23–34 (2018)Google Scholar
  23. 23.
    Chen, D., Zhang, Y., Li, S.: Zeroing neural-dynamics approach and its robust and rapid solution for parallel robot manipulators against superposition of multiple disturbances. Neurocomputing 275, 845–858 (2018)Google Scholar
  24. 24.
    Li, S., Shao, Z., Guan, Y.: A dynamic neural network approach for efficient control of manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49(5), 932–941 (2019)CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Li, S., Zhou, X.: Recurrent-neural-network-based velocity-level redundancy resolution for manipulators subject to a joint acceleration limit. IEEE Trans. Ind. Electron. 66(5), 3573–3582 (2019)Google Scholar
  26. 26.
    Zhang, Z., Chen, S., Li, S.: Compatible convex-nonconvex constrained QP-based dual neural networks for motion planning of redundant robot manipulators. IEEE Trans. Control Syst. Tech. 27(3), 1250–1258 (2019)CrossRefGoogle Scholar
  27. 27.
    Xu, Z., Li, S., Zhou, X., Yan, W., Cheng, T., Huang, D.: Dynamic neural networks based kinematic control for redundant manipulators with model uncertainties. Neurocomputing 329, 255–266 (2019)Google Scholar
  28. 28.
    Li, S., Zhang, Y., Jin, L.: Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. (in press)Google Scholar
  29. 29.
    Mohammed, A.M., Li, S.: Dynamic neural networks for kinematic redundancy resolution of parallel stewart platforms. IEEE Trans. Cybern. 46(7), 1538–1550 (2016). JulCrossRefGoogle Scholar
  30. 30.
    Jin, L., Zhang, Y.: G2-type SRMPC scheme for synchronous manipulation of two redundant robot Arms. IEEE Trans. Cybern. 45(2), 153–164 (2015). FebCrossRefGoogle Scholar
  31. 31.
    Jin, L., Li, S., Xiao, L., Lu, R., Liao, B.: Cooperative motion generation in a distributed network of redundant robot manipulators with noises. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1715–1724 (2018)CrossRefGoogle Scholar
  32. 32.
    Jin, L., Li, S.: Distributed task allocation of multiple robots: a control perspective. IEEE Trans. Syst. Man Cybern. Syst. 48(5), 693–701 (2018)CrossRefGoogle Scholar
  33. 33.
    Vamvoudakis, K.G.: Q-learning for continuous-time linear systems: a model-free infinite horizon optimal control approach. Syst. Control Lett. 100, 14–20 (2017). FebMathSciNetCrossRefGoogle Scholar
  34. 34.
    Lewis, F.L., Vrabie, D., Syrmos, V.L.: Optimal Control. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  35. 35.
    Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE Trans. Autom. Control 35(7), 814–824 (1990). JulMathSciNetCrossRefGoogle Scholar
  36. 36.
    Johansen, T.A.: Toward dependable embedded model predictive control. IEEE Syst. J. 11(2), 1208–1219 (2017). JunGoogle Scholar
  37. 37.
    Chakrabarty, A., Dinh, V., Corless, M.J., Rundell, A.E., Żack, S.H., Buzzard, G.T.: Support vector machine informed explicit nonlinear model predictive control using low-discrepancy sequences. IEEE Trans. Autom. Control 62(1), 135–148 (2017). JanMathSciNetCrossRefGoogle Scholar
  38. 38.
    Chen, W.-H., Ballance, D.J., Gawthrop, P.J.: Optimal control of nonlinear systems: a predictive control approach. Automatica 39(4), 633–641 (2003). AprMathSciNetCrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Li, S.: Predictive suboptimal consensus of multiagent systems with nonlinear dynamics. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1701–1711 (2017)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zhang, Y., Li, S.: Time-scale expansion-based approximated optimal control for underactuated systems using projection neural networks. IEEE Trans. Syst. Man, Cybern. Syst. 48(11), 1957–1967 (2018)CrossRefGoogle Scholar
  41. 41.
    Yu, Z., Xiao, L., Li, H., Zhu, X., Huai, R.: Model parameter identification for lithium batteries using the coevolutionary particle swarm optimization method. IEEE Trans. Ind. Electron. 64(7), 5690–5700 (2017). JulCrossRefGoogle Scholar
  42. 42.
    Lee, S.-H., Yoo, A., Lee, H.-J., Yoon, Y.-D., Han, B.-M.: Identification of induction motor parameters at standstill based on integral calculation. IEEE Trans. Ind. Appl. 53(3), 2130–2139 (2017). MayCrossRefGoogle Scholar
  43. 43.
    Odhano, S.A., Bojoi, R., Armando, E., Homrich, G., Flores Filho, A.F., Popescu, M., Dorrell, D.G.: Identification of three-phase IPM machine parameters using torque tests. IEEE Trans. Ind. Appl. 53(3), 1883–1891 (2017)CrossRefGoogle Scholar
  44. 44.
    Pin, G., Magni, L., Parisini, T., Raimondo, D.M.: Robust receding - horizon control of nonlinear systems with state dependent uncertainties: an input-to-state stability approach. In: Proceedings of American Control Conference, pp. 1667–1672 (2008)Google Scholar
  45. 45.
    Zhao, X., Yang, H., Zong, G.: Adaptive neural hierarchical sliding mode control of nonstrict-feedback nonlinear systems and an application to electronic circuits. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1394–1404 (2017)CrossRefGoogle Scholar
  46. 46.
    Yin, S., Yang, H., Kaynak, O.: Sliding mode observer-based FTC for markovian jump systems with actuator and sensor faults. IEEE Trans. Ind. Electron. 62(7), 3551–3558 (2017). JulGoogle Scholar
  47. 47.
    Cao, L., Li, X., Chen, X., Zhao, Y.: Minimum sliding mode error feedback control for fault tolerant small satellite attitude control. Adv. Space Res. 53(2), 309–324 (2014). JanGoogle Scholar
  48. 48.
    Cao, L., Chen, X., Misra, A.K.: Minimum sliding mode error feedback control for fault tolerant reconfigurable satellite formations with J2 perturbations. Acta Astronaut. 96, 201–216 (2014). MarGoogle Scholar
  49. 49.
    Isidori, A.: Nonlinear Control Systems: An Introduction, 3rd edn. Springer, New York (1995)CrossRefGoogle Scholar
  50. 50.
    Sun, W., Tang, S., Gao, H., Zhao, J.: Two time-scale tracking control of nonholonomic wheeled mobile robots. IEEE Trans. Control Syst. Technol. 24(6), 2059–2069 (2016). NovGoogle Scholar
  51. 51.
    Baek, J., Jin, M., Han, S.: A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Ind. Electron. 63(5), 3632–3637 (2016). JunGoogle Scholar
  52. 52.
    Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009). MarGoogle Scholar
  53. 53.
    Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998). MarGoogle Scholar
  54. 54.
    Davila, J.: Exact tracking using backstepping control design and high-order sliding modes. IEEE Trans. Autom. Control 58(8), 2077–2081 (2013). AugMathSciNetCrossRefGoogle Scholar
  55. 55.
    Chen, C.T.: Linear System Theory and Design. Oxford University Press, New York (1999)Google Scholar
  56. 56.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
  57. 57.
    Atay, F.M.: Van der Pol’s oscillator under delayed feedback. J. Sound Vib. 218(2), 333–339 (1998)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Chuang, C.A., Lee, T.T., Tien, C.C., Hsu, C.F.: Adaptive wavelet neural network control for DC motors via second-order sliding-mode approach. In: Proceedings of International Conference on Machine Learning and Cybernetics, pp. 1174–1179 (2011)Google Scholar
  59. 59.
    Baek, J., Jin, M., Han, S.: A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Ind. Electron. 63(6), 3628–3637 (2016). JunGoogle Scholar
  60. 60.
    Lin, F.-J., Chou, P.-H.: Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network. IEEE Trans. Ind. Electron. 56(1), 178–193 (2009). JanGoogle Scholar
  61. 61.
    Singh, R.K., Yadav, S.: Optimized PI controller for an interacting spherical tank system. In: Proceedings of 1st Conference Electronics Material Engineering Nano-Technology, pp. 1–6 (2017)Google Scholar
  62. 62.
    Shauri, R.L.A., Salleh, N.M., Hadi, A.K.A.: PID position control of 7-DOF three-fingered robotic hand for grasping task. In: Proceedings of IEEE International Conference on Control System Computing Engineering, pp. 70–74 (2014)Google Scholar
  63. 63.
    Anantachaisilp, P., Lin, Z.: An experimental study on PID tuning methods for active magnetic bearing systems. Int. J. Adv. Mechatron. Syst. 5(2), 146–154 (2013)CrossRefGoogle Scholar
  64. 64.
  65. 65.
    Hughes, A., Drury, B.: Electric Motors and Drives: Fundamentals, Types and Applications. Newnes, Oxford (2013)CrossRefGoogle Scholar
  66. 66.
    Cao, L., Li, H.: Unscented predictive variable structure filter for satellite attitude estimation with model errors when using low precision sensors. Acta Astronaut. 127, 505–513 (2016). OctCrossRefGoogle Scholar
  67. 67.
    Cao, L., Chen, Y., Zhang, Z., Li, H.: Predictive smooth variable structure filter for attitude synchronization estimation during satellite formation flying. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1375–1383 (2017). JunCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.College of Cyber SecurityJinan UniversityGuangzhouChina
  2. 2.School of Information Science and EngineeringLanzhou UniversityLanzhouChina
  3. 3.Guangdong Institute of Intelligent ManufacturingGuangdong Academy of ScienceGuangzhouChina

Personalised recommendations