Skip to main content

Exercise and Thyroid Function

  • Chapter
  • First Online:
Endocrinology of Physical Activity and Sport

Abstract

Thyroid hormone receptors are present in virtually every tissue in the body, thereby permitting an important physiologic role for the thyroid hormones, thyroxine (T4), and triiodothyronine (T3).

The aim of this chapter is to describe the effects of thyroid function on exercise tolerance with a special focus on cardiovascular, pulmonary, and skeletal muscle function as well as to describe the changes in the pituitary–thyroid axis induced by exercise.

Hypothyroidism is associated with impaired left ventricular diastolic function during exercise, blunted vasodilatation secondary to reduced endothelium-dependent vasodilatation, reduced pulmonary forced vital capacity and tidal volume at the anaerobic threshold, and, finally, impaired oxidative phosphorylation in mitochondria of skeletal muscle.

Hyperthyroidism is associated with increased left ventricular ejection fraction (LVEF) at rest, lack of an increase or even a drop in LVEF with exercise, increased oxygen demand, low efficiency of cardiopulmonary function, respiratory muscle weakness, and impaired work capacity.

Physical activity affects the pituitary–thyroid axis and the peripheral metabolism of thyroxine. Factors that mitigate alterations in thyroid hormone economy with exercise include age, baseline fitness, nutritional status, ambient temperature, altitude, as well as the time, intensity, and type of exercise performed. The most consistent finding is that reverse T3 tends to increase with exercise. This may reflect an adaptive mechanism aimed at more efficient energy expenditure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wartofsky L. The approach to the patient with thyroid disease. In: Becker KL, editor. Principles and practice of endocrinology and metabolism. 2nd ed. Philadelphia: Lippincott; 1995. p. 278–80.

    Google Scholar 

  2. Loucks AB, Callister R. Induction and prevention of low-T3 syndrome in exercising women. Am J Phys. 1993;264:924–30.

    Google Scholar 

  3. Leonard JL, Koehrle J. Intracellular pathways of iodothyronine metabolism. In: Braverman LE, Dtiger RD, editors. Werner and Ingbar’s the thyroid. 7th ed. Philadelphia: Lippincott; 1996. p. 125–60.

    Google Scholar 

  4. Motomura K, Brent GA. Mechanisms of thyroid hormone action: implications for the clinical manifestation of thyrotoxicosis. Endocrinol Metab Clin N Am. 1998;27:1–19.

    Article  CAS  Google Scholar 

  5. Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;116:1725–35.

    Article  PubMed  Google Scholar 

  6. Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev. 2005;26:704–28.

    Article  CAS  PubMed  Google Scholar 

  7. Dillmann WH. Cellular action of thyroid hormone on the heart. Thyroid. 2002;12:447–52.

    Article  CAS  PubMed  Google Scholar 

  8. Bahouth SW, Cui X, Beauchamp MJ, et al. Thyroid hormone induces beta1-adrenergic receptor gene transcription through a direct repeat separated by five nucleotides. J Mol Cell Cardiol. 1997;29:3223–37.

    Article  CAS  PubMed  Google Scholar 

  9. Zinman T, Shneyvays V, Tribulova N, et al. Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol. 2006;207:220–31.

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt BM, Martin N, Georgens AC, et al. Nongenomic cardiovascular effects of triiodothyronine in euthyroid male volunteers. J Clin Endocrinol Metab. 2002;87:1681–6.

    Article  CAS  PubMed  Google Scholar 

  11. Hiroi Y, Kim H-H, Ying H, et al. Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A. 2006;103:14104–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davis PJ, Davis FB. Nongenomic actions of thyroid hormone on the heart. Thyroid. 2002;12:459–4665.

    Article  CAS  PubMed  Google Scholar 

  13. Wang YG, Dedkova EN, Fiening JP, et al. Acute exposure to thyroid hormone increases Na+ current and intracellular Ca2+ in cat atrial myocytes. J Physiol. 2003;546:491–9.

    Article  CAS  PubMed  Google Scholar 

  14. Diniz GP, Carneiro-Ramos MS, et al. Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol. 2009;104:653–67.

    Article  CAS  PubMed  Google Scholar 

  15. Scanlan TS, Suchland KL, Hart ME, et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med. 2004;10:638–42.

    Article  CAS  PubMed  Google Scholar 

  16. Chiellini G, Frascarelli S, Ghelardoni S, et al. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J. 2007;21:1597–608.

    Article  CAS  PubMed  Google Scholar 

  17. Axelband F, Dias J, Ferrão FM, et al. Nongenomic signaling pathways triggered by thyroid hormones and their metabolite 3-iodothyronamine on the cardiovascular system. J Cell Physiol. 2011;226:21–8.

    Article  CAS  PubMed  Google Scholar 

  18. Hoit BD, Khoury SF, Shao Y. Effects of thyroid hormone on cardiac beta-adrenergic responsiveness in conscious baboons. Circulation. 1997;96:592–8.

    Article  CAS  PubMed  Google Scholar 

  19. Liang F, Webb P, Marimuthu A, Zhang S, Gardner DG. Triiodothyronine increases brain natriuretic peptide (BNP) gene transcription and amplifies endothelin-dependent BNP gene transcription and hypertrophy in neonatal rat ventricular myocytes. J Biol Chem. 2003;278:15073–83.

    Article  CAS  PubMed  Google Scholar 

  20. Marchant C, Brown L, Sernia C. Renin–angiotensin system in thyroid dysfunction in rats. J Cardiovasc Pharmacol. 1993;22:449–55.

    Article  CAS  PubMed  Google Scholar 

  21. Basset A, Blanc J, Messas E, et al. Renin–angiotensin system contribution to cardiac hypertrophy in experimental hyperthyroidism: an echocardiographic study. J Cardiovasc Pharmacol. 2001;37:163–72.

    Article  CAS  PubMed  Google Scholar 

  22. Hong-Brown LQ, Deschepper CF. Effects of thyroid hormones on angiotensinogen gene expression in rat liver, brain, and cultured cells. Endocrinology. 1992;130:1231–7.

    CAS  PubMed  Google Scholar 

  23. Kobori H, Ichihara A, Suzuki H, et al. Thyroid hormone stimulates renin synthesis in rats without involving the sympathetic nervous system. Am J Phys. 1997;272:227–32.

    Google Scholar 

  24. Bader M, Ganten D. Update on tissue renin–angiotensin systems. J Mol Med (Berl). 2008;86:615–21.

    Article  CAS  Google Scholar 

  25. D’Amore A, Black MJ, Thomas WG. The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension. 2005;46:1347–54.

    Article  CAS  PubMed  Google Scholar 

  26. Asahi T, Shimabukuro M, Oshiro Y, et al. Cilazapril prevents cardiac hypertrophy and postischemic myocardial dysfunction in hyperthyroid rats. Thyroid. 2001;11:1009–15.

    Article  CAS  PubMed  Google Scholar 

  27. Pantos C, Paizis I, Mourouzis I, et al. Blockade of angiotensin II type 1 receptor diminishes cardiac hypertrophy, but does not abolish thyroxin-induced preconditioning. Horm Metab Res. 2005;37:500–4.

    Article  CAS  PubMed  Google Scholar 

  28. Su L, Dai Y, Deng W, et al. Renin–angiotensin system blocking agents reverse the myocardial hypertrophy in experimental hyperthyroid cardiomyopathy via altering intracellular calcium handling. Zhonghua Xin Xue Guan Bing Za Zhi. 2008;36:744 (Abstract).

    Google Scholar 

  29. Kenessey A, Ojamaa K. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem. 2006;281:20666–772.

    Article  CAS  PubMed  Google Scholar 

  30. Kuzman JA, O’Connell TD, Gerdes AM. Rapamycin prevents thyroid hormone-induced cardiac hypertrophy. Endocrinology. 2007;148:3477–84.

    Article  CAS  PubMed  Google Scholar 

  31. Weltman NY, Wang D, Redetzke RA, Gerdes AM. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function. PLoS One. 2012;7(10):e46655. https://doi.org/10.1371/journal.pone.0046655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kahaly GJ, Kampmann C, Mohr-Kahaly S. Cardiovascular hemodynamics and exercise tolerance in thyroid disease. Thyroid. 2002;12:473–81.

    Article  PubMed  Google Scholar 

  33. Amidi M, Leon DF, DeGroot WJ, et al. Effect of the thyroid state on myocardial contractility and ventricular ejection rate in man. Circulation. 1968;38:229–39.

    Article  CAS  PubMed  Google Scholar 

  34. Wieshammer S, Keck FS, Waitzinger J, et al. Left ventricular function at rest and during exercise in acute hypothyroidism. Br Heart J. 1988;60:204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Forfar JC, Muir AL, Toft AD. Left ventricular function in hypothyroidism: responses to exercise and beta adrenoceptor blockade. Br Heart J. 1982;48:278–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smallridge RC, Goldman MH, Raines K, et al. Rest and exercise left ventricular ejection fraction before and after therapy in young adults with hyperthyroidism and hypothyroidism. Am J Cardiol. 1987;60:929–30.

    Article  CAS  PubMed  Google Scholar 

  37. Donaghue K, Hales I, Allwright S, et al. Cardiac function in acute hypothyroidism. Eur J Nucl Med. 1985;11:147–9.

    Article  CAS  PubMed  Google Scholar 

  38. Biondi B, Fazio S, Palmieri EA, et al. Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J Clin Endocrinol Metab. 1999;84:2064–7.

    Article  CAS  PubMed  Google Scholar 

  39. Kahaly GJ. Cardiovascular and atherogenic aspects of subclinical hypothyroidism. Thyroid. 2000;10:665–79.

    Article  CAS  PubMed  Google Scholar 

  40. Akcakoyun M, Kaya H, Kargin R, Pala S, Emiroglu Y, Esen O, Karapinar H, Kaya Z, Esen AM. Abnormal left ventricular longitudinal functional reserve assessed by exercise pulsed wave tissue Doppler imaging in patients with subclinical hypothyroidism. J Clin Endocrinol Metab. 2009;94(8):2979–83.

    Article  CAS  PubMed  Google Scholar 

  41. Pearce EN, Yang Q, Benjamin EJ, Aragam J, Vasan RS. Thyroid function and left ventricular structure and function in the Framingham heart study. Thyroid. 2010;20(4):369–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tadic M, Ilic S, Kostic N, Caparevic Z, Celic V. Subclinical hypothyroidism and left ventricular mechanics: a three-dimensional speckle tracking study. J Clin Endocrinol Metab. 2014;99(1):307–14.

    Article  CAS  PubMed  Google Scholar 

  43. Almas SP, Werneck FZ, Coelho EF, Teixeira PF, Vaisman M. Heart rate kinetics during exercise in patients with subclinical hypothyroidism. J Appl Physiol (1985). 2017;122(4):893–8.

    Article  CAS  Google Scholar 

  44. Brenta G, Mutti LA, Schnitman M, et al. Assessment of left ventricular diastolic function by radio-nuclide ventriculography at rest and exercise in subclinical hypothyroidism, and its response to L-thyroxine therapy. Am J Cardiol. 2003;91:1327–30.

    Article  CAS  PubMed  Google Scholar 

  45. Bernstein R, Muller C, Midtbo K, et al. Silent myocardial ischemia in hypothyroidism. Thyroid. 1995;5:443–6.

    Article  CAS  PubMed  Google Scholar 

  46. Oflaz H, Kurt R, Cimen A, et al. Coronary flow reserve is also impaired in patients with subclinical hypothyroidism. Int J Cardiol. 2007;120:414–6.

    Article  PubMed  Google Scholar 

  47. Owen PJD, Rajiv C, Vinereanu D, et al. Subclinical hypothyroidism, arterial stiffness and myocardial reserve. J Clin Endocrinol Metab. 2006;9:2126–32.

    Article  CAS  Google Scholar 

  48. Biondi B, Kahaly GJ. Cardiovascular involvement in patients with different causes of hyperthyroidism. Nat Rev Endocrinol. 2010;6(8):431–43.

    Article  PubMed  Google Scholar 

  49. Klein I. Thyroid hormone and the cardiovascular system. Am J Med. 1988;88:631–7.

    Article  Google Scholar 

  50. Schwartz K, Lecarpenter Y, Martin JL, et al. Myosin isoenzyme distribution correlates with speed of myocardial contraction. J Mol Cell Cardiol. 1981;13:1071–5.

    Article  CAS  PubMed  Google Scholar 

  51. Parisi AF, Hamilton BP, Thomas CN, et al. The short cardiac pre-ejection period, an index of thyrotoxicosis. Circulation. 1974;49:900–4.

    Article  CAS  PubMed  Google Scholar 

  52. Kahaly GJ, Wagner S, Nieswandt J, et al. Stress echocardiography in hyperthyroidism. J Clin Endocrinol Metab. 1999;84:2308–13.

    Article  CAS  PubMed  Google Scholar 

  53. Kahaly GJ, Nieswandt J, Wagner S, et al. Ineffective cardiorespiratory function in hyperthyroidism. J Clin Endocrinol Metab. 1998;83:4075–8.

    CAS  PubMed  Google Scholar 

  54. Kahaly GJ, Nieswandt J, Mohr-Kahaly S. Cardiac risks of hyperthyroidism in the elderly. Thyroid. 1998;8:1165–9.

    Article  CAS  PubMed  Google Scholar 

  55. Peterson CR, Jones RC. Abnormal post-exercise electrocardiogram due to iatrogenic hyperthyroidism. Mil Med. 1969;134:694–7.

    Article  CAS  PubMed  Google Scholar 

  56. Foldes J, Istvanffy M, Halmagyi M, et al. Hyperthyroidism and the heart: study of the left ventricular function in preclinical hyperthyroidism. Acta Med Hung. 1986;43:23–9.

    CAS  PubMed  Google Scholar 

  57. Dörr M, Ittermann T, Aumann N, Obst A, Reffelmann T, Nauck M, Wallaschofski H, Felix SB, Völzke H. Subclinical hyperthyroidism is not associated with progression of cardiac mass and development of left ventricular hypertrophy in middle-aged and older subjects: results from a 5-year follow-up. Clin Endocrinol. 2010;73(6):821–6.

    Article  Google Scholar 

  58. Kaminski G, Dziuk M, Szczepanek-Parulska E, Zybek-Kocik A, Ruchala M. Electrocardiographic and scintigraphic evaluation of patients with subclinical hyperthyroidism during workout. Endocrine. 2016;53:512–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Di Luigi L, Parisi A, Quaranta F, Romanelli F, Tranchita E, Sgrò P, Nardi P, Fattorini G, Cavaliere R, Pigozzi F, D’Armiento M, Lenzi A. Subclinical hyperthyroidism and sport eligibility: an exploratory study on cardiovascular pre-participation screening in subjects treated with levothyroxine for multinodular goiter. J Endocrinol Investig. 2009;32(10):825–31.

    Article  Google Scholar 

  60. Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, et al. Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res. 2010;85:560–70.

    Article  CAS  PubMed  Google Scholar 

  61. Napoli R, Guardasole V, Angelini V, et al. Acute effects of triiodothyronine on endothelial function in human subjects. J Clin Endocrinol Metab. 2007;92:250–4.

    Article  CAS  PubMed  Google Scholar 

  62. Kuzman JA, Gerdes AM, Kobayashi S, et al. Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol. 2005;39:841–4.

    Article  CAS  PubMed  Google Scholar 

  63. Fukuyama K, Ichiki T, Imayama I, et al. Thyroid hormone inhibits vascular remodelling through suppression of CAMP response element binding protein activity. Arterioscler Thromb Vasc Biol. 2006;26:2049–55.

    Article  CAS  PubMed  Google Scholar 

  64. Gaynullina DK, Borzykh AA, Sofronova SI, Selivanova EK, Shvetsova AA, Martyanov AA, Kuzmin IV, Tarasova OS. Voluntary exercise training restores anticontractile effect of NO in coronary arteries of adult rats with antenatal/early postnatal hypothyroidism. Nitric Oxide. 2018;74:10–8.

    Article  CAS  PubMed  Google Scholar 

  65. McAllister RM, Delp MD, Laughlin MH. A review of effects of hypothyroidism on vascular transportin skeletal muscle during exercise. Can J Appl Physiol. 1997;22:1–10.

    Article  CAS  PubMed  Google Scholar 

  66. Delp MD, McAllister RM, Laughlin MH. Exercise training alters aortic vascular reactivity in hypothyroid rats. Am J Phys. 1995;268:1428–35.

    Google Scholar 

  67. Obuobie K, Smith J, Evans LM, et al. Increased central arterial stiffness in hypothyroidism. J Clin Endocrinol Metab. 2002;87:4662–6.

    Article  CAS  PubMed  Google Scholar 

  68. Dagre AG, Lekakis JP, Papamichael CM, et al. Arterial stiffness is increased in subjects with hypothyroidism. Int J Cardiol. 2005;103:1–6.

    Article  PubMed  Google Scholar 

  69. Duan Y, Peng W, Wang X, et al. Community based study of the association of subclinical thyroid dysfunction with blood pressure. Endocrine. 2009;35:136–42.

    Article  CAS  PubMed  Google Scholar 

  70. Walsh JP, Bremner AP, Bulsara MK, et al. Subclinical thyroid dysfunction and blood pressure: a community-based study. Clin Endocrinol. 2006;65:486–91.

    Article  CAS  Google Scholar 

  71. Takashima N, Niwa Y, Mannami T, et al. Characterization of subclinical thyroid dysfunction from cardiovascular and metabolic viewpoints: the Suita study. Circ J. 2007;71:191–5.

    Article  CAS  PubMed  Google Scholar 

  72. Iqbal A, Figenschau Y, Jorde R. Blood pressure in relation to serum thyrotropin: the tromso study. J Hum Hypertens. 2006;20:932–6.

    Article  CAS  PubMed  Google Scholar 

  73. Asvold BO, Bjoro T, Nilsen TI, et al. Association between blood pressure and serum thyroid-stimulating hormone concentration within the reference range: a population- based study. J Clin Endocrinol Metab. 2007;92:841–5.

    Article  CAS  PubMed  Google Scholar 

  74. Luboshitzky R, Aviv A, Herer P, et al. Risk factors for cardiovascular disease in women with subclinical hypothyroidism. Thyroid. 2002;12:421–5.

    Article  PubMed  Google Scholar 

  75. Faber J, Petersen L, Wiinberg N, et al. Hemodynamic changes after levothyroxine treatment in subclinical hypothyroidism. Thyroid. 2002;12:319–24.

    Article  CAS  PubMed  Google Scholar 

  76. Nagasaki T, Inaba M, Kumeda Y, et al. Increased pulse wave velocity in subclinical hypothyroidism. J Clin Endocrinol Metab. 2006;91:154–8.

    Article  CAS  PubMed  Google Scholar 

  77. Lekakis J, Papamichael C, Alevizaki M, et al. Flow-mediated, endothelium dependent vasodilatation is impaired in subjects with hypothyroidism, borderline hypothyroidism, and high normal serum thyrotropin (TSH) values. Thyroid. 1997;7:411–4.

    Article  CAS  PubMed  Google Scholar 

  78. Yazici M, Gorgulu S, Sertbas Y, et al. Effects of thyroxin therapy on cardiac function in patients with subclinical hypothyroidism: index of myocardial performance in the evaluation of left ventricular function. Int J Cardiol. 2004;95:135–43.

    Article  PubMed  Google Scholar 

  79. Taddei S, Caraccio N, Virdis A, et al. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab. 2003;88:3731–7.

    Article  CAS  PubMed  Google Scholar 

  80. Xiang G, Sun H, Hou J. Changes in endothelial function and its association with plasma osteoprotegerin in hypothyroidism with exercise induced silent myocardial ischaemia. Clin Endocrinol. 2008;69:799–803.

    Article  CAS  Google Scholar 

  81. Hofbauer LC, Kluger S, Kuhne CA, et al. Detection and characterization of RANK ligand and osteoprotegerin in the thyroid gland. J Cell Biochem. 2002;86:642–50.

    Article  CAS  PubMed  Google Scholar 

  82. Guang-da X, Hong-yan C, Xian-mei Z. Changes in endothelium-dependent arterial dilation before and after subtotal thyroidectomy in subjects with hyperthyroidism. Clin Endocrinol. 2004;61:400–4.

    Article  Google Scholar 

  83. Ojamaa K, Klemperer JD, Klein I. Acute effects of thyroid hormone on vascular smooth muscle. Thyroid. 1996;6:505–12.

    Article  CAS  PubMed  Google Scholar 

  84. Graettinger JS, Muenster JJ, Selverstone LA, et al. A correlation of clinical and hemodynamic studies in patients with hyperthyroidism with and without congestive heart failure. J Clin Invest. 1959;38:1316–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Theilen EO, Wilson WR. Hemodynamic effects of peripheral vasoconstriction in normal and thyrotoxic patients. J Appl Physiol. 1967;22:207–10.

    Article  CAS  PubMed  Google Scholar 

  86. Völzke H, Ittermann T, Schmidt CO, et al. Subclinical hyperthyroidism and blood pressure in a -population-based prospective cohort study. Eur J Endocrinol. 2009;161:615–21.

    Article  CAS  PubMed  Google Scholar 

  87. Kimura H, Kawagoe Y, Kaneko N, et al. Low efficiency of oxygen utilization during exercise in hyperthyroidism. Chest. 1996;110:1264–70.

    Article  CAS  PubMed  Google Scholar 

  88. Silva LE. Thermogenic mechanism and their hormonal regulation. Physiol Res. 2006;86:435–64.

    CAS  Google Scholar 

  89. Kaciuba-Uscilko H, Brzezinska Z, Kruk B, et al. Thyroid hormone deficiency and muscle metabolism during light and heavy exercise in dogs. Pflugers Arch. 1988;412:366–7.

    Article  Google Scholar 

  90. Ramsay ID. Muscle dysfunction in hyperthyroidism. Lancet. 1966;2:931–4.

    Article  CAS  PubMed  Google Scholar 

  91. McAllister RM, Delp MD, Laughlin MH. Muscle blood flow during exercise in sedentary and trained hypothyroid rats. Am J Phys. 1995;269:949–54.

    Google Scholar 

  92. Wieshammer S, Keck FS, Waitzinger J. Acute hypothyroidism slows the rate of left ventricular -diastolic relaxation. Can J Physiol Pharmacol. 1989;67:1007–10.

    Article  CAS  PubMed  Google Scholar 

  93. McAllister RM, Ogilvie RW, Terjung RL. Functional and metabolic consequences of skeletal muscle remodeling in hypothyroidism. Am J Phys. 1991;260:272–9.

    Google Scholar 

  94. McAllister RM, Sansone JC, Laughlin MH. Effects of hyperthyroidism on muscle blood flow during exercise in the rat. Am J Phys. 1995;268:330–5.

    Google Scholar 

  95. Caiozzo VJ, Haddad F. Thyroid hormone: modulation of muscle structure, function, and adaptive responses to mechanical loading. Exerc Sport Sci Rev. 1996;24:321–61.

    Article  CAS  PubMed  Google Scholar 

  96. McCarthy JJ, Vyas DR, Tsika GL, et al. Segregated regulatory elements direct beta-myosin heavy chain expression in response to altered muscle activity. J Biol Chem. 1999;274:14270–9.

    Article  CAS  PubMed  Google Scholar 

  97. Górecka M, Synak M, Brzezińska Z, Dąbrowski J, Żernicka E. Effect of triiodothyronine (T3) excess on fatty acid metabolism in the soleus muscle from endurance-trained rats. Biochem Cell Biol. 2016;94(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  98. Bocco BM, Louzada RA, Silvestre DH, Santos MC, Anne-Palmer E, Rangel IF, Abdalla S, Ferreira AC, Ribeiro MO, Gereben B, Carvalho DP, Bianco AC, Werneck-de-Castro JP. Thyroid hormone activation by type 2 deiodinase mediates exercise-induced peroxisome proliferator-activated receptor-γ coactivator-1α expression in skeletal muscle. J Physiol. 2016;594(18):5255–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Martin WH, Spina RJ, Korte E, et al. Mechanisms of impaired exercise capacity in short duration experimental hyperthyroidism. J Clin Invest. 1991;88:2047–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Venditti P, Bari A, Di Stefano L, Di Meo S. Effect of T3 on metabolic response and oxidative stress in skeletal muscle from sedentary and trained rats. Free Radic Biol Med. 2009;46(3):360–6.

    Article  CAS  PubMed  Google Scholar 

  101. Fidale TM, Antunes HKM, Roever L, Gonçalves A, Puga GM, Silva RPM, de Resende FN, de Souza FR, Fidale BM, Lizardo FB, Resende ES. Leucine supplementation improves effort tolerance of rats with hyperthyroidism. Front Physiol. 2018;9:1632.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sukp J. Alterations of Ca2+ uptake and Ca2+ -activated ATPase of cardiac sarcoplasmic reticulum in hyper- and hypothyroidism. Biochim Biophys Acta. 1971;252:324–37.

    Article  Google Scholar 

  103. Graig FA, Smith JC. Serum creatinine phosphokinase activity in altered thyroid states. J Clin Endocrinol Metab. 1965;25:723–31.

    Article  CAS  PubMed  Google Scholar 

  104. Emser W, Schimrigk K. Myxedema myopathy: a case report. Eur Neurol. 1977;16:286.

    Article  CAS  PubMed  Google Scholar 

  105. Salehi N, Agoston E, Munir I, Thompson GJ. Rhabdomyolysis in a patient with severe hypothyroidism. Am J Case Rep. 2017;18:912–8.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhou C, Lai S, Xie Y, Zhang S, Lu Y. Rhabdomyolysis in a patient complicated with hypopituitarism and multiple organ dysfunction syndrome and the literature review. Am J Emerg Med. 2018;36(9):1723.e1–1723.e6. https://doi.org/10.1016/j.ajem.2018.06.019. Epub 2018 Jun 7.

    Article  PubMed  Google Scholar 

  107. Riggs JE. Acute exertional rhabdomyolysis in hypothyroidism: the result of a reversible defect in glycogenolysis. Mil Med. 1990;155:171–2.

    Article  CAS  PubMed  Google Scholar 

  108. Klein I, Parker M, Shebert R. Hypothyroidism presenting as muscle stiffness and pseudohypertrophy: Hoffmann’s syndrome. Am J Med. 1981;70:891–4.

    Article  CAS  PubMed  Google Scholar 

  109. Monzani F, Caraccio N, Siciliano G, et al. Clinical and biochemical features of muscle dysfunction in subclinical hypothyroidism. J Clin Endocrinol Metab. 1997;82:3315–8.

    Article  CAS  PubMed  Google Scholar 

  110. Khushu S, Rana P, Sekhri T, et al. Bio-energetic impairment in human calf muscle in thyroid -disorders: a 31P MRS study. Magn Reson Imaging. 2010;28:683–9.

    Article  CAS  PubMed  Google Scholar 

  111. Kaminsky P, Robin-Lherbier B, Brunotte F, et al. Energetic metabolism in hypothyroid skeletal muscle, as studied by phosphorous magnetic resonance spectroscopy. J Clin Endocrinol Metab. 1992;74:124–9.

    CAS  PubMed  Google Scholar 

  112. Bose S, French S, Evans FJ, et al. Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate. J Biol Chem. 2003;278:39155–65.

    Article  CAS  PubMed  Google Scholar 

  113. Haluzik M, Nedvidkova J, Bartak V, et al. Effects of hypo- and hyperthyroidism on noradrenergic activity and glycerol concentrations in human subcutaneous abdominal adipose tissue assessed with microdialysis. J Clin Endocrinol Metab. 2003;88:5605–8.

    Article  CAS  PubMed  Google Scholar 

  114. Rana P, Sripathy G, Varshney A, Kumar P, Devi MM, Marwaha RK, Tripathi RP, Khushu S. Phosphorous magnetic resonance spectroscopy-based skeletal muscle bioenergetic studies in subclinical hypothyroidism. J Endocrinol Investig. 2012;35(2):129–34.

    CAS  Google Scholar 

  115. Maor E, Kivity S, Kopel E, Segev S, Sidi Y, Goldenberg I, Olchovsky D. Differences in heart rate profile during exercise among subjects with subclinical thyroid disease. Thyroid. 2013;23(10):1226–32.

    Article  PubMed  Google Scholar 

  116. Reuters VS, Teixeira Pde F, Vigário PS, Almeida CP, Buescu A, Ferreira MM, de Castro CL, Gold J, Vaisman M. Functional capacity and muscular abnormalities in subclinical hypothyroidism. Am J Med Sci. 2009;338(4):259–63.

    Article  PubMed  Google Scholar 

  117. Tanriverdi A, Ozcan Kahraman B, Ozsoy I, Bayraktar F, Ozgen Saydam B, Acar S, Ozpelit E, Akdeniz B, Savci S. Physical activity in women with subclinical hypothyroidism. J Endocrinol Investig. 2018;42:779.

    Article  CAS  Google Scholar 

  118. Nazar K, Chwalbinska-Moneta J, Machalla J, et al. Metabolic and body temperature changes during exercise in hyperthyroid patients. Clin Sci Mol Med. 1978;54:323–7.

    CAS  PubMed  Google Scholar 

  119. Ramsay ID. Electromyography in thyrotoxicosis. Q J Med. 1965;34:255.

    CAS  PubMed  Google Scholar 

  120. Asayama K, Kato K. Oxidative muscular injury and its relevance to hyperthyroidism. Free Radic Biol Med. 1990;8:293–303.

    Article  CAS  PubMed  Google Scholar 

  121. Fitts RH, Brimmer CJ, Troup JP, et al. Contractile and fatigue properties of thyrotoxic rat skeletal muscle. Muscle Nerve. 1984;7:470–7.

    Article  CAS  PubMed  Google Scholar 

  122. Ribeiro LF, Teixeira IP, Aparecido da Silva G, Dalia RA, Júnior MC, Bertolini NO, Rostom de Mello MA, Luciano E. Effects of swimming training on tissue glycogen content in experimental thyrotoxic rats. Can J Physiol Pharmacol. 2012;90(5):587–93.

    Article  CAS  PubMed  Google Scholar 

  123. Gubran C, Narain R, Malik L, Saeed SA. A young man presenting with paralysis after vigorous exercise. BMJ Case Rep. 2012;27:2012.

    Google Scholar 

  124. Kelley DE, Garhib H, Kennedy FP, et al. Thyrotoxic periodic paralysis: report of 10 cases and review of the electromyographic findings. Arch Intern Med. 1989;149:2597–600.

    Article  CAS  PubMed  Google Scholar 

  125. McManis PG, Lambert EH, Daube JR. The exercise test in periodic paralysis. Muscle Nerve. 1986;9:704–10.

    Article  CAS  PubMed  Google Scholar 

  126. Jackson CE, Barohn RJ. Improvement of the exercise test after therapy in thyrotoxic periodic -paralysis. Muscle Nerve. 1992;15:1069–71.

    Article  CAS  PubMed  Google Scholar 

  127. Links TP, van der Hoeven JR. Improvement of the exercise test after therapy in thyrotoxic periodic paralysis. Muscle Nerve. 1993;16:1132–3.

    Article  CAS  PubMed  Google Scholar 

  128. Arimura K, Arimura Y, Ng AR, et al. Muscle membrane excitability after exercise in thyrotoxic periodic paralysis and thyrotoxicosis without periodic paralysis. Muscle Nerve. 2007;36:784–8.

    Article  PubMed  Google Scholar 

  129. Oh VM, Taylor EA, Yeo SH, et al. Cation transport across lymphocyte plasma membranes in euthyroid and thyrotoxic men with and without hypokalaemic periodic paralysis. Clin Sci (Lond). 1990;78:199–206.

    Article  CAS  Google Scholar 

  130. Falhammar H, Thorén M, Calissendorff J. Thyrotoxic periodic paralysis: clinical and molecular aspects. Endocrine. 2013;43(2):274–84.

    CAS  PubMed  Google Scholar 

  131. Lichtstein DM, Arteaga RB. Rhabdomyolysis associated with hyperthyroidism. Am J Med Sci. 2006;332:103–5.

    Article  PubMed  Google Scholar 

  132. Alshanti M, Eledrisi MS, Jones E. Rhabdomyolysis associated with hyperthyroidism. Am J Emerg Med. 2001;19:317.

    Article  CAS  PubMed  Google Scholar 

  133. Summachiwakij S, Sachmechi I. Rhabdomyolysis induced by nonstrenuous exercise in a patient with graves’ disease. Case Rep Endocrinol. 2014;2014:286450.

    PubMed  PubMed Central  Google Scholar 

  134. Erkintalo M, Bendahan D, Mattéi JP, et al. Reduced metabolic efficiency of skeletal muscle energetics in hyperthyroid patients evidenced quantitatively by in vivo phosphorus-31 magnetic resonance spectroscopy. Metabolism. 1998;47:769–76.

    Article  CAS  PubMed  Google Scholar 

  135. Ruff RL. Endocrine myopathies. In: Engel AG, Banker BQ, editors. Myology. New York: Mc Graw Hill; 1986. p. 1881–7.

    Google Scholar 

  136. Zoref-Shani E, Shainberg A, Kessler-Icekson G. Production and degradation of AMP in cultured rat skeletal and heart muscle: a comparative study. Adv Exp Med Biol. 1986;195:485–91.

    Article  PubMed  Google Scholar 

  137. Fukui H, Taniguchi S, Ueta Y, et al. Activity of the purine nucleotide cycle of the exercising muscle in patients with hyperthyroidism. J Clin Endocrinol Metab. 2001;86:2205–10.

    Article  CAS  PubMed  Google Scholar 

  138. Hisatome I, Ishiko R, Mashiba H, et al. Excess purine degradation in skeletal muscle with hyperthyroidism. Muscle Nerve. 1990;13:558–9.

    Article  CAS  PubMed  Google Scholar 

  139. Vigário PS, De Oliveira CD, Cordeiro MF, et al. Effects of physical activity on body composition and fatigue perception in patients on thyrotropin-suppressive therapy for differentiated thyroid carcinoma. Thyroid. 2011;21:695–700.

    Google Scholar 

  140. Ceresini G, Ceda GP, Lauretani F, Maggio M, Bandinelli S, Guralnik JM, Cappola AR, Usberti E, Morganti S, Valenti G, Ferrucci L. Mild thyroid hormone excess is associated with a decreased physical function in elderly men. Aging Male. 2011;14(4):213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. McAllister RM, Delp MD, Laughlin MH. Thyroid status and exercise tolerance: cardiovascular and metabolic considerations. Sports Med. 1995;20:189–98.

    Article  CAS  PubMed  Google Scholar 

  142. Bahn RS, Castro MR. Approach to the patient with nontoxic multinodular goiter. J Clin Endocrinol Metab. 2011;96:1202–12.

    Article  CAS  PubMed  Google Scholar 

  143. Zwillich CW, Pierson OJ, Hofeldt FD, et al. Ventilatory control in myxedema and hypothyroidism. N Engl J Med. 1975;292:662–5.

    Article  CAS  PubMed  Google Scholar 

  144. Ingbar DH. The respiratory system in hypothyroidism. In: Braverman LE, Utiger RD, editors. Werner and Ingbar’s the thyroid. 7th ed. Philadelphia: Lippincott; 1996. p. 805–10.

    Google Scholar 

  145. Wilson WR, Bedell ON. The pulmonary abnormalities in myxedema. J Clin Invest. 1960;39:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wassermann K. Diagnosing cardiovascular and lung pathophysiology from exercise gas exchange. Chest. 1997;112:1091–101.

    Article  Google Scholar 

  147. Werneck FZ, Coelho EF, de Lima JR, Laterza MC, Barral MM, Teixeira Pde F, Vaisman M. Pulmonary oxygen uptake kinetics during exercise in subclinical hypothyroidism. Thyroid. 2014;24(6):931–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mainenti MR, Vigário PS, Teixeira PF, Maia MD, Oliveira FP, Vaisman M. Effect of levothyroxine replacement on exercise performance in subclinical hypothyroidism. J Endocrinol Investig. 2009;32(5):470–3.

    Article  CAS  Google Scholar 

  149. Kahaly G, Hellermann J, Mohr-Kahaly S, et al. Impaired cardiopulmonary exercise capacity in hyperthyroidism. Chest. 1996;109:57–61.

    Article  CAS  PubMed  Google Scholar 

  150. Hellermann J, Kahaly GJ. Cardiopulmonary involvement in thyroid disease. Pneumologie. 1996;50:375–80.

    CAS  PubMed  Google Scholar 

  151. Small D, Gibbons W, Levy RD, et al. Exertional dyspnea and ventilation in hyperthyroidism. Chest. 1992;101:1268–73.

    Article  CAS  PubMed  Google Scholar 

  152. Ayers J, Clark TH, Maisey MN. Thyrotoxicosis and dyspnea. Clin Endocrinol. 1982;164:645.

    Google Scholar 

  153. Massey DG, Becklake MR, McKenzie JM, et al. Circulatory and ventilatory response to exercise in thyrotoxicosis. N Engl J Med. 1967;276:1104–12.

    Article  CAS  PubMed  Google Scholar 

  154. Siafakas NM, Milona I, Salesiotou V, et al. Respiratory muscle strength in hyperthyroidism before and after treatment. Am Rev Respir Dis. 1992;146:1025–9.

    Article  CAS  PubMed  Google Scholar 

  155. Stein M, Kimbel P, Johnson RL. Pulmonary function in hyperthyroidism. J Clin Invest. 1960;40:348–63.

    Article  Google Scholar 

  156. Goswami R, Guleria R, Gupta AK, et al. Prevalence of diaphragmatic muscle weakness and dyspnoea in Graves’ disease and their reversibility with carbimazole therapy. Eur J Endocrinol. 2002;147:299–303.

    Article  CAS  PubMed  Google Scholar 

  157. Sestoft L, Saltin B. The low physical working capacity of thyrotoxic patients is not normalized by oral antithyroid treatment. Clin Physiol. 1988;8:9–15.

    Article  CAS  PubMed  Google Scholar 

  158. Portella RB, da Costa Silva JL, Wagman MB, et al. Exercise performance in young and middle-aged female patients with subclinical hyperthyroidism. Thyroid. 2006;16:731–5.

    Article  PubMed  Google Scholar 

  159. Mercuro G, Panzuto MG, Bina A, et al. Cardiac function, physical exercise capacity, and quality of life during long-term thyrotropin-suppressive therapy with levothyroxine: effect of individual dose tailoring. J Clin Endocrinol Metab. 2000;85:159–64.

    Article  CAS  PubMed  Google Scholar 

  160. Mastorakos G, Pavlatou M. Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm Metab Res. 2005;37:577–84.

    Article  CAS  PubMed  Google Scholar 

  161. Uribe RM, Jaimes-Hoy L, Ramírez-Martínez C, García-Vázquez A, Romero F, Cisneros M, Cote-Vélez A, Charli JL, Joseph-Bravo P. Voluntary exercise adapts the hypothalamus-pituitary-thyroid axis in male rats. Endocrinology. 2014;155(5):2020–30.

    Article  CAS  PubMed  Google Scholar 

  162. Lesmana R, Iwasaki T, Iizuka Y, Amano I, Shimokawa N, Koibuchi N. The change in thyroid hormone signaling by altered training intensity in male rat skeletal muscle. Endocr J. 2016;63(8):727–38.

    Article  CAS  PubMed  Google Scholar 

  163. Huang WS, Yu MD, Lee MS, et al. Effect of treadmill exercise on circulating thyroid hormone measurements. Med Princ Pract. 2004;13:15–9.

    Article  PubMed  Google Scholar 

  164. Premachandra BN, Winder WW, Hickson R, et al. Circulating reverse triiodothyronine in humans during exercise. Eur J Appl Physiol. 1981;47:281–8.

    Article  CAS  Google Scholar 

  165. Mason JW, Hartley LH, Kotchen TA, et al. Plasma thyroid stimulating hormone response in anticipation of muscular exercise in the human. J Clin Endocrinol Metab. 1973;37:403–6.

    Article  CAS  PubMed  Google Scholar 

  166. Liewendahl K, Helenius T, Niiveri H, et al. Fatty acid-induced increase in serum dialyzable free thyroxine after physical exercise: implication for nonthyroidal illness. J Clin Endocrinol Metab. 1992;74:1361–5.

    CAS  PubMed  Google Scholar 

  167. Galbo H, Hummer L, Petersen IB, et al. Thyroid and testicular hormone responses to graded and prolonged exercise in man. Eur J Appl Physiol. 1977;36:101–6.

    Article  CAS  Google Scholar 

  168. Schmid P, Wolf W, Pilger E, et al. TSH, T3, rT3 and FT4 in maximal and submaximal physical exercise. Eur J Appl Physiol. 1982;48:31–9.

    Article  CAS  Google Scholar 

  169. Hackney AC, Kallman A, Hosick KP, Rubin DA, Battaglini CL. Thyroid hormonal responses to intensive interval versus steady-state endurance exercise sessions. Hormones (Athens). 2012;11(1):54–60.

    Article  Google Scholar 

  170. Hesse V, Vilser C, Scheibe I, et al. Thyroid hormone metabolism under extreme body exercise. Exp Clin Endocrinol. 1989;94:82–8.

    Article  CAS  PubMed  Google Scholar 

  171. Semple CG, Thomson LA, Beastall GR. Endocrine responses to marathon running. Br J Sports Med. 1985;19:148–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sander M, Rocker L. Influence of marathon running on thyroid hormones. Int J Sports Med. 1988;9:123–6.

    Article  CAS  PubMed  Google Scholar 

  173. Limanová Z, Sonka I, Kratochvil O, et al. Effects of exercise on serum cortisol and thyroid hormones. Exp Clin Endocrinol. 1983;81:308–14.

    Article  PubMed  Google Scholar 

  174. Rone IK, Dons RF, Reed HL. The effect of endurance training on serum triiodothyronine kinetics in man: physical conditioning marked by enhanced thyroid hormone metabolism. Clin Endocrinol. 1992;37:325–30.

    Article  CAS  Google Scholar 

  175. Smallridge RC, Whorton NE, Burman KD, et al. Effects of exercise and physical fitness on the pituitary-thyroid axis and on prolactin secretion in male runners. Metabolism. 1985;34:949–54.

    Article  CAS  PubMed  Google Scholar 

  176. Deligiannis A, Karamouzis M, Kouidi E, et al. Plasma TSH, T3, T4 and cortisol responses to swimming at varying water temperatures. Br J Sports Med. 1993;27:247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dulac S, Quirion A, DeCarufel D, et al. Metabolic and hormonal responses to long-distance swimming in cold water. Int J Sports Med. 1987;8:352–6.

    Article  CAS  PubMed  Google Scholar 

  178. Reichlin S, Martin JB, Jackson IMD. Regulation of thyroid stimulating hormone (TSH) secretion. In: Jeffcoate SL, Hutchinson ISM, editors. The endocrine hypothalamus. London: Academic; 1978. p. 237–43.

    Google Scholar 

  179. Rhodes BA, Conway MJ. Exercise lowers thyroid radioiodine uptake: concise communication. J Nucl Med. 1980;21:835–7.

    PubMed  Google Scholar 

  180. Tremblay A, Poehlman ET, Despres JP, et al. Endurance training with constant energy intake in identical twins: changes over time in energy expenditure and related hormones. Metabolism. 1997;46:499–503.

    Article  CAS  PubMed  Google Scholar 

  181. Lehmann M, Knizia K, Gastmann U, et al. Influence of 6-week, 6 days per week, training on pituitary function in recreational athletes. Br J Sports Med. 1993;27:186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Burman KD, Diamond RC, Harvey GS, et al. Glucose modulation of alterations in serum iodothyronine concentrations induced by fasting. Metabolism. 1979;28:291–9.

    Article  CAS  PubMed  Google Scholar 

  183. Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Phys. 1994;264:817–23.

    Google Scholar 

  184. Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.

    Article  CAS  PubMed  Google Scholar 

  185. Maughan RJ. Nutrition in sport. Chichester: Wiley; 2008.

    Google Scholar 

  186. Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40. Epub 2004 Apr 19.

    Article  PubMed  Google Scholar 

  187. Mathieson RA, Walberg IT, Gwazdauskas FC, et al. The effect of varying carbohydrate content of a very-low-caloric-diet on resting metabolic rate and thyroid hormones. Metabolism. 1986;35:394–8.

    Article  CAS  PubMed  Google Scholar 

  188. O’Connell M, Robbins DC, Horton ES, et al. Changes in serum concentrations of 3,3’,5’triiodothyronine and 3,5,3’-triiodothyronine during prolonged moderate exercise. J Clin Endocrinol Metab. 1979;49:242–6.

    Article  PubMed  Google Scholar 

  189. Opstad PK, Falch D, Okedalen O, et al. The thyroid function in young men during prolonged exercise and the effect of energy and sleep deprivation. Clin Endocrinol. 1984;20:657–9.

    Article  CAS  Google Scholar 

  190. Hackney AC, Hodgdon JA. Thyroid hormone changes during military field operations: effects of cold exposure in the Arctic. Aviat Space Environ Med. 1992;63(7):606–11.

    CAS  PubMed  Google Scholar 

  191. Hackney AC, Feith S, Pozos R, Seale J. Effects of high altitude and cold exposure on resting thyroid hormone concentrations. Aviat Space Environ Med. 1995;66(4):325–9.

    CAS  PubMed  Google Scholar 

  192. Sawhney RC, Malhotra AS. Thyroid function in sojourners and acclimatized low landers at high -altitude in man. Horm Metab Res. 1991;23:81.

    Article  CAS  PubMed  Google Scholar 

  193. Stock MJ, Chapman C, Stirling JL, Campbell IT. Effects of exercise, altitude, and food on blood -hormone and metabolic levels. J Appl Physiol. 1978;45:350–4.

    Article  CAS  PubMed  Google Scholar 

  194. Fortunato RS, Ignácio DL, Padron AS, et al. The effect of acute exercise session on thyroid hormone economy in rats. J Endocrinol. 2008;198:347–53.

    Article  CAS  PubMed  Google Scholar 

  195. Simsch C, Lormes W, Petersen KG, et al. Training intensity influences leptin and thyroid hormones in highly trained rowers. Int J Sports Med. 2002;23:422–7.

    Article  CAS  PubMed  Google Scholar 

  196. Benso A, Broglio F, Aimaretti G, et al. Endocrine and metabolic responses to extreme altitude and physical exercise in climbers. Eur J Endocrinol. 2007;157:733–40. Soc Ital Biol Sper. 1984;60:753–9.

    Article  CAS  PubMed  Google Scholar 

  197. Harber VJ, Petersen SR, Chilibeck PD. Thyroid hormone concentrations and muscle metabolism in amenorrheic and eumenorrheic athletes. Can J Appl Physiol. 1998;23:293–306.

    Article  CAS  PubMed  Google Scholar 

  198. Creatsas G, Salakos N, Averkiou M, et al. Endocrinological profile of oligomenorrheic strenuously exercising adolescents. Int J Gynaecol Obstet. 1992;38:215–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Wartofsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ylli, D., Klubo-Gwiezdzinska, J., Wartofsky, L. (2020). Exercise and Thyroid Function. In: Hackney, A., Constantini, N. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-33376-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33376-8_6

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-33375-1

  • Online ISBN: 978-3-030-33376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics