Skip to main content

Enabling Simulations of Droplets with the Direct Simulation Monte Carlo Method

  • Conference paper
  • First Online:
Droplet Interactions and Spray Processes

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 121))

Abstract

The evaporation behaviour of droplets changes with their size. Most numerical tools to simulate evaporation phenomena of droplets solve macroscopic models such as the Navier-Stokes equations. These numerical tools have an advantage in computational effort compared to tools solving microscopic models such as the Boltzmann equation. However, macroscopic models lose physical validity for microscopic scales. One goal is therefore to estimate the necessary level of microscopic modelling for droplet evaporation. This requires a tool capable of solving a microscopic model, simulating evaporation of droplets, and which can be used on large computational domains. For this, the Direct Simulation Monte Carlo method is applied, which is capable of capturing microscopic effects on a larger domain. Two functionalities have been added to simulate droplets: a literature-based microscopic evaporation model and spherical moving bodies, which are independent of a body fitted mesh. With these functionalities, droplet size change resulting from evaporation and Brownian motion is simulated. This marks the first steps in order to compare results with macroscopic based simulation tools and estimate the necessary level of microscopic modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/piclas-framework/piclas.

References

  1. Antoine, C.: Pressure calculation of various vapours. (Calcul des tensions de diverses vapeurs). Comptes rendus hebdomadaires des séances de l’Académie des Sciences 107:778–780 (1888)

    Google Scholar 

  2. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  3. Borgnakke, C., Larsen, P.S.: Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 18(4), 405–420 (1975)

    Article  Google Scholar 

  4. Carey, V., Oyumi, S., Ahmed, S.: Post-nucleation growth of water microdroplets in supersaturated gas mixtures: a molecular simulation study. Int. J. Heat Mass Transf. 40(10), 2393–2406 (1997)

    Article  Google Scholar 

  5. Fasoulas, S., Munz, C.-D., Pfeiffer, M., Beyer, J., Binder, T., Copplestone, S., Mirza, A., Nizenkov, P., Ortwein, P., Reschke, W.: Combining particle-in-cell and direct simulation Monte Carlo for the simulation of reactive plasma flows. Phys. Fluids 31(7), 072006 (2019)

    Article  Google Scholar 

  6. Garcia, A.L., Wagner, W.: Generation of the maxwellian inflow distribution. J. Comput. Phys. 217, 693–708 (2006)

    Article  MathSciNet  Google Scholar 

  7. Hertz, H.: Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann. Phys. 253(10), 177–193 (1882)

    Article  Google Scholar 

  8. Hindenlang, F., Bolemann, T., Munz, C.-D.: Mesh curving techniques for high order discontinuous galerkin simulations. In: IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach, pp. 133–152. Springer (2015) [Online; release V2.4]

    Google Scholar 

  9. Holyst, R., Litniewski, M., Jakubczyk, D.: Evaporation of liquid droplets of nano- and micro-meter size as a function of molecular mass and intermolecular interactions: experiments and molecular dynamics simulations. Soft Matter 13(35), 5858–5864 (2017)

    Article  Google Scholar 

  10. Köhler, H.: The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 32, 1152–1161 (1936)

    Article  Google Scholar 

  11. Linstrom, P.J., Mallard, W.G.: The NIST chemistry webbook: a chemical data resource on the internet. J. Chem. Eng. Data 46(5), 1059–1063 (2001)

    Article  Google Scholar 

  12. Maxwell, J.: On stresses in rarefied gases arising from inequalities of temperature (abstract) Phil. Mag 27, 304 (1878)

    MATH  Google Scholar 

  13. Ortwein, P., Copplestone, S.M., Munz, C.-D., Binder, T., Reschke, W., Fasoulas, S.: A particle localization algorithm on unstructured curvilinear polynomial meshes. Comput. Phys. Commun. 235, 63–74 (2019)

    Article  Google Scholar 

  14. Pusey, P.N.: The study of Brownian motion by intensity fluctuation spectroscopy. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 293(1402), 429–439 (1979)

    Google Scholar 

  15. Schlesinger, D., Sellberg, J.A., Nilsson, A., Pettersson, L.G.M.: Evaporative cooling of microscopic water droplets in vacuo: molecular dynamics simulations and kinetic gas theory. J. Chem. Phys. 144(12), 124502 (2016)

    Google Scholar 

  16. Stindl, T.: Entwicklung und Untersuchung eines Partikelverfahrens zur Simulation elektromagnetischer Wechselwirkungen in verdünnten Plasmaströmungen. dissertation, Universität Stuttgart (2015)

    Google Scholar 

  17. Tsuruta, T.: Molecular boundary conditions and temperature jump at liquid-vapor interface. In: AIP Conference Proceedings, vol. 663. pp. 988–995. AIP (2003)

    Google Scholar 

  18. Tsuruta, T., Nagayama, G.: A microscopic formulation of condensation coefficient and interface transport phenomena. Energy 30(6), 795–805 (2005)

    Article  Google Scholar 

  19. Wadsworth, D.C., VanGilder, D.B., Dogra, V.K.: Gas-surface interaction model evaluation for DSMC applications. Technical report, DTIC Document (2002)

    Google Scholar 

  20. Walck, C.: Statistical Distributions for Experimentalists. Particle Physics Group (2007)

    Google Scholar 

Download references

Acknowledgements

The authors thank the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) for funding this research within the project Droplet Interaction Technologies (DROPIT) of the International Research Training Groups (IRTG-2160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wladimir Reschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reschke, W., Pfeiffer, M., Fasoulas, S. (2020). Enabling Simulations of Droplets with the Direct Simulation Monte Carlo Method. In: Lamanna, G., Tonini, S., Cossali, G., Weigand, B. (eds) Droplet Interactions and Spray Processes. Fluid Mechanics and Its Applications, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-33338-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33338-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33337-9

  • Online ISBN: 978-3-030-33338-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics