Advertisement

An Investigation of Different Splitting Techniques for the Isentropic Euler Equations

  • Jonas ZeifangEmail author
  • Klaus Kaiser
  • Jochen Schütz
  • Francesco Carlo Massa
  • Andrea Beck
Conference paper
  • 81 Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 121)

Abstract

For the accurate and efficient discretization of the low-Mach isentropic Euler equations, which can be used for the description of droplet dynamics, several IMEX splitting schemes have been introduced in literature. In this work, we cast multiple splittings into a common framework, which makes it possible to compare them numerically. Temporal discretization is done with IMEX Runge-Kutta methods, while for the spatial part, we rely on the discontinuous Galerkin spectral element method. It is shown that, while the influence of the splitting on accuracy is small, it has a large impact on efficiency.

Notes

Acknowledgements

J. Zeifang has been supported by the German Research Foundation (DFG) through the International Research Training Group GRK 2160: Droplet Interaction Technologies. K. Kaiser has been partially supported by the German Research Foundation (DFG) through project No. 361/6-1; his study was supported by the Special Research Fund (BOF) of Hasselt University. F. Massa is supported by the Supporting Talented Researchers (STaRS) program of the University of Bergamo. We acknowledge the support and the computing time provided by the High Performance Computing Center Stuttgart (HLRS) through the hpcdg project.

References

  1. 1.
    Ascher, U.M., Ruuth, S., Spiteri, R.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)Google Scholar
  2. 2.
    Boscarino, S., Russo, G., Scandurra, L.: All Mach number second order semi-implicit scheme for the Euler equations of gasdynamics. J. Sci. Comput. 77, 850–884 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cordier, F., Degond, P., Kumbaro, A.: An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations. J. Comput. Phys. 231, 5685–5704 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Degond, P., Tang, M.: All speed scheme for the low Mach number limit of the isentropic Euler equation. Commun. Comput. Phys. 10, 1–31 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Haack, J., Jin, S., Liu, J.G.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations. Commun. Comput. Phys. 12, 955–980 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kaiser, K.: A high order discretization technique for singularly perturbed differential equations. Ph.D. thesis, RWTH Aachen University, Hasselt University (2018)Google Scholar
  8. 8.
    Kaiser, K., Schütz, J.: A high-order method for weakly compressible flows. Commun. Comput. Phys. 22(4), 1150–1174 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kaiser, K., Schütz, J., Schöbel, R., Noelle, S.: A new stable splitting for the isentropic Euler equations. J. Sci. Comput. 70, 1390–1407 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: One-dimensional flow. J. Comput. Phys. 121, 213–237 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers, 1st edn. Springer (2009)Google Scholar
  13. 13.
    Liu, H., Zou, J.: Some new additive Runge-Kutta methods and their applications. J. Comput. Appl. Math. 190(1–2), 74–98 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Noelle, S., Bispen, G., Arun, K.R., Lukáčová-Medvid’ová, M., Munz, C.D.: A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36, B989–B1024 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Schleper, V.: A HLL-type Riemann solver for two-phase flow with surface forces and phase transitions. Appl. Numer. Math. 108, 256–270 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zeifang, J., Kaiser, K., Beck, A., Schütz, J., Munz, C.D.: Efficient high-order discontinuous Galerkin computations of low Mach number flows. Commun. Appl. Math. Comput. Sci. 13(2), 243–270 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jonas Zeifang
    • 1
    Email author
  • Klaus Kaiser
    • 2
  • Jochen Schütz
    • 3
  • Francesco Carlo Massa
    • 4
  • Andrea Beck
    • 1
  1. 1.Institute of Aerodynamics and GasdynamicsUniversity of StuttgartStuttgartGermany
  2. 2.IGPM, RWTH Aachen UniversityAachenGermany
  3. 3.Faculty of SciencesHasselt UniversityDiepenbeekBelgium
  4. 4.Department of Engineering and Applied SciencesUniversity of BergamoDalmineItaly

Personalised recommendations