Skip to main content

Improvement of the Level-Set Ghost-Fluid Method for the Compressible Euler Equations

  • Conference paper
  • First Online:
Droplet Interactions and Spray Processes

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 121))

Abstract

This paper describes improvements of a level-set ghost-fluid algorithm in the scope of sharp interface multi-phase flow simulations. The method is used to simulate drop-drop and shock-drop interactions. Both, the level-set and the bulk phases are discretized by a high order discontinuous Galerkin spectral element method. The multi-phase interface and shocks are captured with a finite volume sub-cell method. The first improvement, is the use of the finite-volume sub-cells to capture discontinuities in the level-set equation. This allows the simulation of merging droplets. The second improvement is the introduction of an increased polynomial degree for the level-set equation in comparison to the Euler equations. The goal of this modification is to reduce parasitic currents. Additionally, the whole method is validated against experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adalsteinsson, D., Sethian, J.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148(1), 2–22 (1999). https://doi.org/10.1006/jcph.1998.6090

  2. Albadawi, A., Donoghue, D., Robinson, A., Murray, D., Delauré, Y.: Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment. Int. J. Multiph. Flow 53, 11–28 (2013). https://doi.org/10.1016/j.ijmultiphaseflow.2013.01.005

    Article  Google Scholar 

  3. Fechter, S.: Compressible multi-phase simulation at extreme conditions using a discontinuous Galerkin scheme (2015). https://doi.org/10.18419/opus-3982

  4. Fechter, S., Jaegle, F., Schleper, V.: Exact and approximate riemann solvers at phase boundaries. Comput. Fluids 75, 112–126 (2013). https://doi.org/10.1016/j.compfluid.2013.01.024

    Article  MathSciNet  MATH  Google Scholar 

  5. Fechter, S., Munz, C.D.: A discontinuous galerkin-based sharp-interface method to simulate three-dimensional compressible two-phase flow. Int. J. Numer. Methods Fluids 78(7), 413–435 (2015). https://doi.org/10.1002/fld.4022

    Article  MathSciNet  Google Scholar 

  6. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999). https://doi.org/10.1006/jcph.1999.6236

    Article  MathSciNet  MATH  Google Scholar 

  7. Föll, F., Hitz, T., Müller, C., Munz, C.D., Dumbser, M.: On the use of tabulated equations of state for multi-phase simulations in the homogeneous equilibrium limit. Shock Waves (2019). https://doi.org/10.1007/s00193-019-00896-1

  8. Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012). https://doi.org/10.1016/j.compfluid.2012.03.006

    Article  MathSciNet  MATH  Google Scholar 

  9. Huerta, A., Casoni, E., Peraire, J.: A simple shock-capturing technique for high-order discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 69(10), 1614–1632 (2011). https://doi.org/10.1002/fld.2654

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000). https://doi.org/10.1137/s106482759732455x

    Article  MathSciNet  MATH  Google Scholar 

  11. Kopriva, D.A.: Spectral element methods. In: Scientific Computation, pp. 293–354. Springer, The Netherlands (2009). https://doi.org/10.1007/978-90-481-2261-5_8

  12. Liu, T., Khoo, B., Wang, C.: The ghost fluid method for compressible gas–water simulation. J. Comput. Phys. 204(1), 193–221 (2005). https://doi.org/10.1016/j.jcp.2004.10.012

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, T., Khoo, B., Xie, W.: The modified ghost fluid method as applied to extreme fluid-structure interaction in the presence of cavitation. Commun. Comput. Phys. 1(5), 898–919 (2006)

    MATH  Google Scholar 

  14. Merkle, C., Rohde, C.: The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques. ESAIM: Mathe. Model. Numer. Anal. 41(6), 1089–1123 (2007). https://doi.org/10.1051/m2an:2007048

  15. Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2006). https://doi.org/10.2514/6.2006-112

  16. Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009). https://doi.org/10.1016/j.jcp.2009.04.042

    Article  MathSciNet  MATH  Google Scholar 

  17. Saurel, R., Petitpas, F., Abgrall, R.: Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607, (2008). https://doi.org/10.1017/s0022112008002061

  18. Schleper, V.: A HLL-type Riemann solver for two-phase flow with surface forces and phase transitions. Appl. Numer. Math. 108, 256–270 (2016). https://doi.org/10.1016/j.apnum.2015.12.010

    Article  MathSciNet  MATH  Google Scholar 

  19. Sembian, S., Liverts, M., Tillmark, N., Apazidis, N.: Plane shock wave interaction with a cylindrical water column. Phys. Fluids 28(5), 056102 (2016). https://doi.org/10.1063/1.4948274

    Article  Google Scholar 

  20. Sonntag, M., Munz, C.D.: Efficient parallelization of a shock capturing for discontinuous galerkin methods using finite volume sub-cells. J. Sci. Comput. 70(3), 1262–1289 (2016). https://doi.org/10.1007/s10915-016-0287-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994). https://doi.org/10.1006/jcph.1994.1155

    Article  MATH  Google Scholar 

  22. Wang, C.W., Liu, T.G., Khoo, B.C.: A real ghost fluid method for the simulation of multimedium compressible flow. SIAM J. Sci. Comput. 28(1), 278–302 (2006). https://doi.org/10.1137/030601363

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

C. Müller, J. Zeifang and S. Chiocchetti were supported by the German Research Foundation (DFG) though the project GRK 2160/1 “Droplet Interaction Technologies”. T. Hitz and S. Jöns were supported by the DFG through the project SFB-TRR 75 "Droplet Dynamics Under Extreme Ambient Conditions". The simulations were performed on the national supercomputer Cray XC40 (Hazel Hen) at the High Performance Computing Center Stuttgart (HLRS) under the grant number hpcmphas/44084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Müller, C., Hitz, T., Jöns, S., Zeifang, J., Chiocchetti, S., Munz, CD. (2020). Improvement of the Level-Set Ghost-Fluid Method for the Compressible Euler Equations. In: Lamanna, G., Tonini, S., Cossali, G., Weigand, B. (eds) Droplet Interactions and Spray Processes. Fluid Mechanics and Its Applications, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-33338-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33338-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33337-9

  • Online ISBN: 978-3-030-33338-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics