Advertisement

Drop Shape Oscillations

  • Günter BrennEmail author
Conference paper
  • 76 Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 121)

Abstract

The present invited contribution to this book reviews the state of understanding and application of shape oscillations of liquid drops in a gaseous environment. The oscillations influence transport processes across the surface of spray drops, the drag as well as heat and mass transfer. The physical basics of linear and nonlinear oscillations are presented and discussed. For the linear case, the characteristic equation of the drop is derived, and the equations of motion are solved, accounting for the fact that the characteristic equation has pairs of complex conjugate solutions. The effects characterising the nonlinear case are reviewed and discussed. Shape oscillations of non-Newtonian, viscoelastic liquid drops exhibit interesting influences from time scales of the viscoelastic liquid relative to the oscillation period. The liquid elasticity may take over from surface tension as the restoring effect. Drop shape oscillations are used for measuring material properties of the drop liquid, such as dynamic viscosity and surface tension, as well as rheological and interfacial parameters. The most important measurement techniques and measured liquid properties are presented and discussed.

Notes

Acknowledgements

Support from the Deutsche Forschungsgemeinschaft (DFG) and the Austrian Science Fund (FWF) through the joint project I-3326-N32 is gratefully acknowledged.

References

  1. 1.
    Rayleigh, Lord, J.W.S.: On the capillary phenomena of jets. Proc. R. Soc. London A 29, 71–97 (1879)Google Scholar
  2. 2.
    Lamb, H.: On the oscillations of a viscous spheroid. Proc. London Math. Soc. 13, 51–66 (1881)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lamb, H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1932)zbMATHGoogle Scholar
  4. 4.
    Miller, C.A., Scriven, L.E.: The oscillations of a fluid drop immersed in another fluid. J. Fluid Mech. 32, 417–435 (1968)CrossRefGoogle Scholar
  5. 5.
    Prosperetti, A.: Viscous effects on perturbed spherical flows. Quart. Appl. Math. 35, 339–352 (1977)CrossRefGoogle Scholar
  6. 6.
    Prosperetti, A.: Normal-mode analysis for the oscillations of a viscous liquid drop in an immiscible liquid. J. Méc. 19, 149–182 (1980)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Prosperetti, A.: Free oscillations of drops and bubbles: the initial-value problem. J. Fluid Mech. 100, 333–347 (1980)CrossRefGoogle Scholar
  8. 8.
    Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids. Wiley, New York (1987)Google Scholar
  9. 9.
    Chandrasekhar, S.: The oscillations of a viscous liquid globe. Proc. London Math. Soc. 9, 141–149 (1959)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Khismatullin, D.B., Nadim, A.: Shape oscillations of a viscoelastic drop. Phys. Rev. E 63, 061508 (2001)CrossRefGoogle Scholar
  11. 11.
    Trinh, E., Wang, T.G.: Large-amplitude free and driven drop-shape oscillations: experimental observations. J. Fluid Mech. 122, 315–338 (1982)CrossRefGoogle Scholar
  12. 12.
    Becker, E., Hiller, W.J., Kowalewski, T.A.: Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. J. Fluid Mech. 231, 189–210 (1991)CrossRefGoogle Scholar
  13. 13.
    Becker, E., Hiller, W.J., Kowalewski, T.A.: Nonlinear dynamics of viscous droplets. J. Fluid Mech. 258, 191–216 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Foote, G.B.: A numerical method for studying liquid drop behaviour: simple oscillation. J. Comp. Phys. 11, 507–530 (1973)CrossRefGoogle Scholar
  15. 15.
    Tsamopoulos, J.A., Brown, R.A.: Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519–537 (1983)CrossRefGoogle Scholar
  16. 16.
    Renoult, M.-C., Brenn, G., Plohl, G., Mutabazi, I.: Weakly nonlinear instability of a newtonian liquid jet. J. Fluid Mech. 856, 169–201 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Brenn, G., Teichtmeister, St.: Linear shape oscillations and polymeric time scales of viscoelastic drops. J. Fluid Mech. 733, 504–527 (2013)Google Scholar
  18. 18.
    Hiller, W.J., Kowalewski, T.A.: Surface tension measurements by the oscillating droplet method. PCH PhysicoChemical Hydrodyn. 11, 103–112 (1989)Google Scholar
  19. 19.
    Hsu, C.J., Apfel, R.E.: A technique for measuring interfacial tension by quadrupole oscillation of drops. J. Colloid Interface Sci. 107, 467–476 (1985)CrossRefGoogle Scholar
  20. 20.
    Perez, M., Salvo, L., Suéry, M., Bréchet, Y., Papoular, M.: Contactless viscosity measurement by oscillations of gas-levitated drops. Phys. Rev. E 61, 2669–2675 (2000)CrossRefGoogle Scholar
  21. 21.
    Egry, I., Lohöfer, G., Seyhan, I., Schneider, S., Feuerbacher, B.: Viscosity of the eutectic Pd\(_{78}\)Cu\(_6\)Si\(_{16}\) measured by the oscillating drop technique in microgravity. Appl. Phys. Lett. 73, 462–463 (1998)CrossRefGoogle Scholar
  22. 22.
    Tian, Y.R., Holt, R.G., Apfel, R.E.: Investigations of liquid surface rheology of surfactant solutions by droplet shape oscillations: theory. Phys. Fluids 7, 2938–2949 (1995)CrossRefGoogle Scholar
  23. 23.
    Apfel, R.E., Tian, Y.R., Jankovsky, J., Shi, T., Chen, X., Holt, R.G., Trinh, E., Croonquist, A., Thornton, K.C., Sacco Jr., A., Coleman, C., Leslie, F.W., Matthiesen, D.H.: Free oscillations and surfactant studies of superdeformed drops in microgravity. Phys. Rev. Lett. 78, 1912–1915 (1997)CrossRefGoogle Scholar
  24. 24.
    Aske, N., Orr, R., Sjöblom, J.: Dilatational elasticity moduli of water-crude oil interfaces using the oscillating pendant drop. J. Dispersion Sci. Technol. 23, 809–825 (2002)CrossRefGoogle Scholar
  25. 25.
    Kovalchuk, V.I., Krägel, J., Aksenenko, E.V., Loglio, G., Liggieri, L.: Oscillating bubble and drop techniques. In: Möbius, D., Miller, R. (eds.) Novel Methods to Study Interfacial Layers, pp. 485–516. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  26. 26.
    Brenn, G., Plohl, G.: The oscillating drop method for measuring the deformation retardation time of viscoelastic liquids. J. Non-Newton. Fluid Mech. 223, 88–97 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hoath, S.D., Hsiao, W.-K., Martin, G.D., Jung, S.J., Butler, S.A., Morrison, N.F., Harlen, O.G., Yang, L.S., Bain, C.D., Hutchings, I.M.: Oscillations of aqueous PEDOT:PSS fluid droplets and the properties of complex fluids in drop-on-demand inkjet printing. J. Non-Newton. Fluid Mech. 223, 28–36 (2015).  https://doi.org/10.1016/j.jnnfm.2015.05.006, Creative Commons user license https://creativecommons.org/licenses/by/4.0/

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics and Heat TransferGraz University of TechnologyGrazAustria

Personalised recommendations