Single-Camera 3D PTV Methods for Evaporation-Driven Liquid Flows in Sessile Droplets

  • Massimiliano RossiEmail author
  • Alvaro Marin
Conference paper
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 121)


The experimental characterization of liquid flows in sessile evaporating droplets is an important task for the fundamental understanding of the complex phenomena occurring in these apparently simple systems. The liquid flow induced by the droplet evaporation has a strong three-dimensional character and conventional visualization methods are typically difficult to apply. A more effective approach is to look inside the droplets from the substrate where the droplet lies and use single-camera 3D particle tracking velocimetry (PTV) methods to reconstruct the whole flow field. This paper discusses the implementation of an experimental setup for the quantitative characterization of the flow inside sessile evaporating droplets based on two single-camera 3D PTV methods: the Astigmatic Particle Tracking Velocimetry (APTV) and the General Defocusing Particle Tracking (GDPT). Exemplary results on different types of sessile evaporating droplets are reported and discussed. The presented approach is easy to implement, does not require special or costly equipment, and has the potential to become a standard tool for this type of experiments.



The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft KA1808/22. MR acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 713683 (COFUNDfellowsDTU). AM acknowledges funding from the European Research Council (ERC-StG-2015 NanoPacks, grant agreement No. 678573).


  1. 1.
    Zheng, B., Roach, L.S., Ismagilov, R.F.: Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 125(37), 11170–11171 (2003)CrossRefGoogle Scholar
  2. 2.
    Sempels, W., De Dier, R., Mizuno, H., Hofkens, J., Vermant, J.: Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nat. Commun. 4, 1757 (2013)CrossRefGoogle Scholar
  3. 3.
    Shahidzadeh-Bonn, N., Rafaı, S., Bonn, D., Wegdam, G.: Salt crystallization during evaporation: impact of interfacial properties. Langmuir 24(16), 8599–8605 (2008)CrossRefGoogle Scholar
  4. 4.
    Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827 (1997)CrossRefGoogle Scholar
  5. 5.
    Hu, H., Larson, R.G.: Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110(14), 7090–7094 (2006)CrossRefGoogle Scholar
  6. 6.
    Kim, H., Boulogne, F., Um, E., Jacobi, I., Button, E., Stone, H.A.: Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 116(12), 124501 (2016)CrossRefGoogle Scholar
  7. 7.
    Conn, J.J., Duffy, B.R., Pritchard, D., Wilson, S.K., Halling, P.J., Sefiane, K.: Fluid-dynamical model for antisurfactants. Phys. Rev. E 93(4), 043121 (2016)CrossRefGoogle Scholar
  8. 8.
    Still, T., Yunker, P.J., Yodh, A.G.: Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir 28(11), 4984–4988 (2012)CrossRefGoogle Scholar
  9. 9.
    Champougny, L., Scheid, B., Restagno, F., Vermant, J., Rio, E.: Surfactant-induced rigidity of interfaces: a unified approach to free and dip-coated films. Soft Matter 11(14), 2758–2770 (2015)CrossRefGoogle Scholar
  10. 10.
    Rossi, M., Marin, A., Kähler, C.J.: Interfacial flows in sessile evaporating droplets of mineral water. Phys. Rev. E 100(3), 033103 (2019)CrossRefGoogle Scholar
  11. 11.
    Marin, A., Karpitschka, S., Noguera-Marín, D., Cabrerizo-Vílchez, M.A., Rossi, M., Kähler, C.J., Valverde, M.A.R.: Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops. Phys. Rev. Fluids 4(4), 041601 (2019)CrossRefGoogle Scholar
  12. 12.
    Marin, A., Liepelt, R., Rossi, M., Kähler, C.J.: Surfactant-driven flow transitions in evaporating droplets. Soft Matter 12(5), 1593–1600 (2016)CrossRefGoogle Scholar
  13. 13.
    Cierpka, C., Segura, R., Hain, R., Kähler, C.J.: A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics. Meas. Sci. Technol. 21(4), 045401 (2010)CrossRefGoogle Scholar
  14. 14.
    Cierpka, C., Rossi, M., Segura, R., Kähler, C.J.: On the calibration of astigmatism particle tracking velocimetry for microflows. Meas. Sci. Technol. 22(1), 015401 (2011)CrossRefGoogle Scholar
  15. 15.
    Rossi, M., Kähler, C.J.: Optimization of astigmatic particle tracking velocimeters. Exp. Fluids 55(9), 2014 (1809)Google Scholar
  16. 16.
    Barnkob, R., Kähler, C.J., Rossi, M.: General defocusing particle tracking. Lab Chip 15(17), 3556–3560 (2015)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Rossi, M.: Synthetic image generator for defocusing and astigmatic PIV/PTV. Meas. Sci. Technol. 31, 017003 (2020)CrossRefGoogle Scholar
  19. 19.
    Hu, H., Larson, R.G.: Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21(9), 3972–3980 (2005)CrossRefGoogle Scholar
  20. 20.
    Girard, F., Antoni, M., Sefiane, K.: On the effect of Marangoni flow on evaporation rates of heated water drops. Langmuir 24(17), 9207–9210 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysicsTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Physics of Fluids GroupMax Planck Center for Complex Fluid Dynamics, University of TwenteEnschedeThe Netherlands

Personalised recommendations