Skip to main content

Visualization Techniques for Droplet Interfaces and Multiphase Flow

  • Conference paper
  • First Online:
Droplet Interactions and Spray Processes

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 121))

Abstract

The analysis of large multiphase flow simulation data poses an interesting and complex research question, which can be addressed with interactive visualization techniques, as well as semi-automated analysis processes. In this project, the focus lies on the investigation of forces governing droplet evolution. Therefore, our proposed methods visualize and allow the analysis of droplet deformation and breakup, droplet behavior and evolution, and droplet-internal flow. By deriving quantities for interface stretching and bending, we visualize and analyze the influence of surface tension force on breakup dynamics, and forces induced by Marangoni convection. Using machine learning to train a simple model for the prediction of physical droplet properties, we provide a visual analysis framework that can be used to analyze large simulation data. Computing droplet-local velocity fields where every droplet is observed separately in its own frame of reference, we create local, interpretable visualizations of flow within droplets, allowing for the investigation of the influence of flow dynamics on droplet evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayachit, U.: The ParaView Guide: A Parallel Visualization Application. Kitware, Inc., New York (2015)

    Google Scholar 

  2. Bhatia, H., Pascucci, V., Bremer, P.: The natural Helmholtz-Hodge decomposition for open-boundary flow analysis. IEEE Trans. Vis. Comput. Graph. 20(11), 1566–1578 (2014)

    Article  Google Scholar 

  3. Eisenschmidt, K., Ertl, M., Gomaa, H., Kieffer-Roth, C., Meister, C., Rauschenberger, P., Reitzle, M., Schlottke, K., Weigand, B.: Direct numerical simulations for multiphase flows: an overview of the multiphase code FS3D. Appl. Math. Comput. 272, 508–517 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Endert, A., Ribarsky, W., Turkay, C., Wong, B.L.W., Nabney, I.T., Blanco, I.D., Rossi, F.: The state of the art in integrating machine learning into visual analytics. Comput. Graph. Forum 36(8), 458–486 (2017)

    Article  Google Scholar 

  5. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Berlin (2005)

    Google Scholar 

  6. Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P.: Discrete shells. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 62–67. The Eurographics Association (2003)

    Google Scholar 

  7. Günther, T., Gross, M.H., Theisel, H.: Generic objective vortices for flow visualization. ACM Trans. Graph. 36(4), 141:1–141:11 (2017)

    Google Scholar 

  8. Günther, T., Rössl, C., Theisel, H.: Hierarchical opacity optimization for sets of 3D line fields. Comput. Graph. Forum 33(2), 507–516 (2014)

    Article  Google Scholar 

  9. Günther, T., Theisel, H., Gross, M.H.: Decoupled opacity optimization for points, lines and surfaces. Comput. Graph. Forum 36(2), 153–162 (2017)

    Article  Google Scholar 

  10. Haller, G.: Lagrangian coherent structures. Ann. Rev. Fluid Mech. 47(1), 137–162 (2015)

    Article  MathSciNet  Google Scholar 

  11. Heinemann, M.: ML-based visual analysis of droplet behaviour in multiphase flow simulations. Master’s thesis, University of Stuttgart (2018)

    Google Scholar 

  12. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  Google Scholar 

  13. Karch, G.K., Beck, F., Ertl, M., Meister, C., Schulte, K., Weigand, B., Ertl, T., Sadlo, F.: Visual analysis of inclusion dynamics in two-phase flow. IEEE Trans. Vis. Comput. Graph. 24(5), 1841–1855 (2018)

    Article  Google Scholar 

  14. Karch, G.K., Sadlo, F., Meister, C., Rauschenberger, P., Eisenschmidt, K., Weigand, B., Ertl, T.: Visualization of piecewise linear interface calculation. In: IEEE Pacific Visualization Symposium (PacificVis 2013), pp. 121–128 (2013)

    Google Scholar 

  15. Kenwright, D.N., Haimes, R.: Vortex identification—applications in aerodynamics: a case study. In: IEEE Visualization ’97, Proceedings, pp. 413–416. IEEE Computer Society and ACM (1997)

    Google Scholar 

  16. Lamanna, G., Tonini, S., Cossali, G.E., Weigand, B.: Selected results of the international research training group (GRK 2160/1) “droplet interaction technologies” (DROPIT). In: Proceedings of ICLASS 2018, 14th Triennial International Conference on Liquid Atomization and Spray Systems. ILASS (Institute for Liquid Atomization and Spray Systems) (2018)

    Google Scholar 

  17. Ling, J., Templeton, J.: Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty. Phys. Fluids 27(8), 085103 (2015)

    Google Scholar 

  18. Marchesin, S., Chen, C., Ho, C., Ma, K.: View-dependent streamlines for 3D vector fields. IEEE Trans. Vis. Comput. Graph. 16(6), 1578–1586 (2010)

    Article  Google Scholar 

  19. McLoughlin, T., Jones, M.W., Laramee, R.S., Malki, R., Masters, I., Hansen, C.D.: Similarity measures for enhancing interactive streamline seeding. IEEE Trans. Vis. Comput. Graph. 19(8), 1342–1353 (2013)

    Article  Google Scholar 

  20. Myers, T.G.: Thin films with high surface tension. SIAM Rev. 40(3), 441–462 (1998)

    Article  MathSciNet  Google Scholar 

  21. Obermaier, H., Joy, K.I.: Derived metric tensors for flow surface visualization. IEEE Trans. Vis. Comput. Graph. 18(12), 2149–2158 (2012)

    Article  Google Scholar 

  22. Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009)

    Article  MathSciNet  Google Scholar 

  23. Straub, A.: Visualization of interface instabilities in two-phase flow. Master’s thesis, University of Stuttgart (2016)

    Google Scholar 

  24. Straub, A., Heinemann, M., Ertl, T.: Visualization and visual analysis for multiphase flow. In: Proceedings of the DIPSI Workshop 2019. Droplet Impact Phenomena & Spray Investigations, pp. 25–27. Università degli studi di Bergamo (2019)

    Google Scholar 

  25. Straub, A., Karch, G.K., Boblest, S., Kaufmann, J., Sadlo, F., Weigand, B., Ertl, T.: Visual analysis of interface deformation in multiphase flow. In: Proceedings of the DIPSI Workshop 2018. Droplet Impact Phenomena & Spray Investigations, pp. 45–47. Università degli studi di Bergamo (2018)

    Google Scholar 

  26. Thoroddsen, S.T., Qian, B., Etoh, T.G., Takehara, K.: The initial coalescence of miscible drops. Phys. Fluids 19(7), 072110 (2007)

    Google Scholar 

  27. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerating Eulerian fluid simulation with convolutional networks. In: Proceedings of the 34th International Conference on Machine Learning (ICML 2017), vol. 70, pp. 3424–3433. PMLR (2017)

    Google Scholar 

  28. Wiebel, A., Garth, C., Scheuermann, G.: Localized flow analysis of 2D and 3D vector fields. In: EuroVis05: Joint Eurographics—IEEE VGTC Symposium on Visualization, pp. 143–150. Eurographics Association (2005)

    Google Scholar 

  29. Wiebel, A., Tricoche, X., Schneider, D., Jänicke, H., Scheuermann, G.: Generalized streak lines: analysis and visualization of boundary induced vortices. IEEE Trans. Vis. Comput. Graph. 13(6), 1735–1742 (2007)

    Article  Google Scholar 

  30. Youngs, D.L.: An interface tracking method for a 3D Eulerian hydrodynamics code. Atomic Weapons Research Establishment (AWRE), Technical Report, 44(92) (1984)

    Google Scholar 

Download references

Acknowledgements

This chapter was written by Alexander Straub and Thomas Ertl, but many more took part in the research for the herein presented projects (in alphabetical order): Sebastian Boblest, Steffen Frey, Moritz Heinemann, Grzegorz K. Karch, Filip Sadlo, Jonas Steigerwald, Gleb Tkachev, and Bernhard Weigand. This work was partially funded by Deutsche Forschungsgemeinschaft (DFG) as part of the Cluster of Excellence EXC 2075 “SimTech” (390740016), Transregional Collaborative Research Center SFB/Transregio 75 (84292822), and the International Research Training Group GRK 2160 “DROPIT” (270852890).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Straub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Straub, A., Ertl, T. (2020). Visualization Techniques for Droplet Interfaces and Multiphase Flow. In: Lamanna, G., Tonini, S., Cossali, G., Weigand, B. (eds) Droplet Interactions and Spray Processes. Fluid Mechanics and Its Applications, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-33338-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33338-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33337-9

  • Online ISBN: 978-3-030-33338-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics