Advanced Multi-objective Design Analysis to Identify Ideal Stent Design

  • Ramtin Gharleghi
  • Heidi Wright
  • Somesh Khullar
  • Jinbo Liu
  • Tapabrata Ray
  • Susann BeierEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11794)


Coronary stents are the preferred option for treating diseased coronary arteries. When implanted, the stent is deployed at the lesion to restore the lumen area by scaffolding the vessel open. However, stents still have a relatively high failure rate of 2–8%, with many patients requiring further interventions due to restenosis and stent thrombosis. It is known that blood flow disruption caused by the presence of a stent can trigger signalling pathways that accelerate restenosis or trigger thrombus formation. This work aims to find design variable values that minimize these adverse flow conditions using Multi-Objective optimisation.


Stent design Multi-objective design analysis Hemodynamics 


  1. 1.
    Moses, J.W., et al.: Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. New Engl. J. Med. 349(14), 1315–1323 (2003). 05261CrossRefGoogle Scholar
  2. 2.
    Alfonso, F., et al.: A prospective randomized trial of drug-eluting balloons versus everolimus-eluting stents in patients with in-stent restenosis of drug-eluting stents: the RIBS IV randomized clinical trial. J. Am. Coll. Cardiol. 66(1), 23–33 (2015). 00157CrossRefGoogle Scholar
  3. 3.
    Malek, A.M.: Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21), 2035 (1999). Scholar
  4. 4.
    Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduction. In: Wang, L., Ng, A., Deb, K. (eds.) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 3–34. Springer, London (2011). 00294CrossRefGoogle Scholar
  5. 5.
    Kraiss, L.W., Geary, R.L., Mattsson, E.J., Vergel, S., Au, Y.T., Clowes, A.W.: Acute reductions in blood flow and shear stress induce platelet-derived growth factor-A expression in baboon prosthetic grafts. Circul. Res. 79(1), 45–53 (1996)CrossRefGoogle Scholar
  6. 6.
    Morbiducci, U., Kok, A.M., Kwak, B.R., Stone, P.H., Steinman, D.A., Wentzel, J.J.: Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. J. Thromb. Haemost. 115(3), 484–92 (2016). 00051CrossRefGoogle Scholar
  7. 7.
    Wentzel, J.J., et al.: Relationship between neointimal thickness and shear stress after wallstent implantation in human coronary arteries. Circulation 103(13), 1740–1745 (2001). Scholar
  8. 8.
    Dolan, J.M., Kolega, J., Meng, H.: High wall shear stress and spatial gradients in vascular pathology: a review. Ann. Biomed. Eng. 41(7), 1411–27 (2013). Scholar
  9. 9.
    Putra, N.K., Palar, P.S., Anzai, H., Shimoyama, K., Ohta, M.: Multiobjective design optimization of stent geometry with wall deformation for triangular and rectangular struts. Med. Biol. Eng. Comput. 57(1), 15–26 (2019). 00001CrossRefGoogle Scholar
  10. 10.
    Tammareddi, S., Sun, G., Li, Q.: Multiobjective robust optimization of coronary stents. Mater. Design 90, 682–692 (2016). 00025CrossRefGoogle Scholar
  11. 11.
    Gundert, T.J., Marsden, A.L., Yang, W., LaDisa, J.F.: Optimization of cardiovascular stent design using computational fluid dynamics. J. Biomech. Eng. 134(1), 011002 (2012). 00070CrossRefGoogle Scholar
  12. 12.
    Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrick, D.: Non-newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39(6), 1116–1128 (2006). Scholar
  13. 13.
    Balossino, R., Gervaso, F., Migliavacca, F., Dubini, G.: Effects of different stent designs on local hemodynamics in stented arteries. J. Biomech. 41(5), 1053–1061 (2008). 00165CrossRefGoogle Scholar
  14. 14.
    Pant, S., Limbert, G., Curzen, N.P., Bressloff, N.W.: Multiobjective design optimisation of coronary stents. Biomaterials 32(31), 7755–7773 (2011). 00082CrossRefGoogle Scholar
  15. 15.
    Beier, S., et al.: Hemodynamics in idealized stented coronary arteries: important stent design considerations. Ann. Biomed. Eng. 44(2), 315–329 (2016). 00026CrossRefGoogle Scholar
  16. 16.
    Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143–151 (1987). 01410MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tang, T.D., Giddens, D.P., Zarins, C.K., Glagov, S.: Velocity profile and wall shear measurements in a model human coronary artery. In: ASME Winter Annual Meeting Proceedings, Atlanta. ASME, New York (1991). 00010Google Scholar
  18. 18.
    Myers, J.G., Moore, J.A., Ojha, M., Johnston, K.W., Ethier, C.R.: Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29(2), 109–120 (2001). 00327CrossRefGoogle Scholar
  19. 19.
    O’Rourke, M.F., Nichols, W.W.: McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. Hodder Arnold, London (2005). 04949Google Scholar
  20. 20.
    Razavi, A., Shirani, E., Sadeghi, M.: Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 44(11), 2021–2030 (2011). Scholar
  21. 21.
    Amirjani, A., Yousefi, M., Cheshmaroo, M.: Parametrical optimization of stent design; a numerical-based approach. Comput. Mater. Science 90, 210–220 (2014). 00012CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ramtin Gharleghi
    • 1
  • Heidi Wright
    • 1
  • Somesh Khullar
    • 1
  • Jinbo Liu
    • 1
  • Tapabrata Ray
    • 2
  • Susann Beier
    • 1
    Email author
  1. 1.UNSW SyndeySydneyAustralia
  2. 2.UNSW CanberraCanberraAustralia

Personalised recommendations