Advertisement

Tracking of Intracavitary Instrument Markers in Coronary Angiography Images

  • Yihe Zhang
  • Xiuxiu Bai
  • Qinhua Jin
  • Jing Jing
  • Yundai ChenEmail author
  • Qiang Liu
  • Wenhui Tang
  • Quanmao Lu
  • Yanan Mi
  • Rui Zhu
  • Yihui Cao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11794)

Abstract

In order to quickly and accurately obtain the marker points in coronary angiography images in interventional surgery for cardiovascular diseases, this paper proposes a method for tracking the marker points in coronary angiography images. Firstly, it is necessary for the operator to manually mark a small number of vascular center points to find the position of the guide line and the labeled points on the guide wire. So the vascular center line can be obtained by using the vascular center point of artificial labeling with Hessian matrix eigenvector. Then we design a filter to detect the guide wire by combining the characteristics of the guide wire and the center line of the vessel. Finally, the marker point is detected by filtering along the guide wire. In the following images, all the vascular center points in the image are obtained by the automatic vascular centerline acquisition algorithm, and the vascular centerline of the frame is obtained by Iterative Closest Point (ICP) registration of the point set with the adjacent frame centerline. Then the guide wire acquisition method of this frame image is consistent with the above algorithm. Finally, the marker of the frame is obtained by combining the positions of the adjacent frame marker and frame guide wire. The experimental results show that our method can quickly and accurately detect the location of marker points in coronary angiography image sequence with a small amount of manual assistance, and can be applied to the computer-aided diagnosis and treatment of cardiovascular diseases.

Keywords

Angiography Cardiovascular Object tracking Coronary angiography image 

References

  1. 1.
    Bauer, C., Bischof, H.: A novel approach for detection of tubular objects and its application to medical image analysis. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 163–172. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69321-5_17CrossRefGoogle Scholar
  2. 2.
    Bennink, H.E., et al.: A novel 3D multi-scale lineness filter for vessel detection. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 436–443. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75759-7_53CrossRefGoogle Scholar
  3. 3.
    Brannigan, M.: An adaptive piecewise polynomial curve fitting procedure for data analysis. Commun. Stat. 10(18), 1823–1848 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Damon, J.: Properties of ridges and cores for two-dimensional images. J. Math. Imaging Vis. 10(2), 163–174 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ezra, E., Sharir, M., Efrat, A.: On the ICP algorithm. In: Symposium on Computational Geometry (2006)Google Scholar
  6. 6.
    Fan, Z., Pei, L., Liu, X., Zhou, S.: Vascular centerline extraction of CTA images based on minimal path and Bayesian tracking. In: International Congress on Image & Signal Processing (2018)Google Scholar
  7. 7.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Muliscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) International Conference on Medical Image Computing & Computer-assisted Intervention, vol. 1496, pp. 130–137. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0056195CrossRefGoogle Scholar
  8. 8.
    Li, Z., Zhang, Y., Liu, G., Shao, H., Li, W., Tang, X.: A robust coronary artery identification and centerline extraction method in angiographies. Biomed. Signal Process. Control 16, 1–8 (2015)CrossRefGoogle Scholar
  9. 9.
    Velho, L., Carvalho, P., Gomes, J., De Figueiredo, L.: Mathematical Optimization in Computer Graphics and Vision. Morgan Kaufmann, Burlington (2011)Google Scholar
  10. 10.
    Wink, O., Niessen, W.J., Viergever, M.A.: Multiscale vessel tracking. IEEE Trans. Med. Imaging 23(1), 130–133 (2004)CrossRefGoogle Scholar
  11. 11.
    Xiao, R., Yang, J., Li, T., Liu, Y.: Ridge-based automatic vascular centerline tracking in X-ray angiographic images. In: Yang, J., Fang, F., Sun, C. (eds.) IScIDE 2012. LNCS, vol. 7751, pp. 793–800. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36669-7_96CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yihe Zhang
    • 1
  • Xiuxiu Bai
    • 1
  • Qinhua Jin
    • 2
  • Jing Jing
    • 2
  • Yundai Chen
    • 2
    Email author
  • Qiang Liu
    • 3
  • Wenhui Tang
    • 3
  • Quanmao Lu
    • 4
  • Yanan Mi
    • 4
  • Rui Zhu
    • 5
  • Yihui Cao
    • 4
  1. 1.School of Software EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Department of CardiologyChinese PLA General HospitalBeijingPeople’s Republic of China
  3. 3.Fuwai Hospital Chinese Academy of Medical SciencesBeijingPeople’s Republic of China
  4. 4.Shenzhen Vivolight Medical Device & Technolog Co., Ltd.ShenzhenPeople’s Republic of China
  5. 5.Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anPeople’s Republic of China

Personalised recommendations