Advertisement

LabelECG: A Web-Based Tool for Distributed Electrocardiogram Annotation

  • Zijian Ding
  • Shan Qiu
  • Yutong Guo
  • Jianping Lin
  • Li Sun
  • Dapeng Fu
  • Zhen Yang
  • Chengquan Li
  • Yang Yu
  • Long Meng
  • Tingting Lv
  • Dan Li
  • Ping ZhangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11794)

Abstract

Electrocardiography plays an essential role in diagnosing and screening cardiovascular diseases in daily healthcare. Deep neural networks have shown the potentials to improve the accuracies of arrhythmia detection based on electrocardiograms (ECGs). However, more ECG records with ground truth are needed to promote the development and progression of deep learning techniques in automatic ECG analysis. Here we propose a web-based tool for ECG viewing and annotating, LabelECG. With the facilitation of unified data management, LabelECG is able to distribute large cohorts of ECGs to dozens of technicians and physicians, who can simultaneously make annotations through web-browsers on PCs, tablets and cell phones. Along with the doctors from four hospitals in China, we applied LabelECG to support the annotations of about 15,000 12-lead resting ECG records in three months. These annotated ECGs have successfully supported the First China ECG intelligent Competition. LabelECG will be freely accessible on the Internet to support similar researches, and will also be upgraded through future works.

Keywords

Cardiovascular disease Electrocardiograms Distributed annotation 

Notes

Acknowledgement

This work is supported by The National Key Research and Development Program of China (2017YFB1401804) and The Medicine-Engineering Innovation Support Program of Tsinghua University (IDS-MSP-2019003).

References

  1. 1.
    Clifford, G.D., Azuaje, F., McSharry, P.: Advanced Methods and Tools for ECG Data Analysis. Artech House, Boston (2006)Google Scholar
  2. 2.
    Schläpfer, J., Wellens, H.J.: Computer-interpreted electrocardiograms: benefits and limitations. J. Am. Coll. Cardiol. 70(9), 1183–1192 (2017)CrossRefGoogle Scholar
  3. 3.
    Marquette 12SL ECG Analysis Program, Statement of Validation and Accuracy. http://gehealthcare.com. Accessed 13 July 2019
  4. 4.
    Macfarlane, P.W., Devine, B., Clark, E: The university of Glasgow (Uni-G) ECG analysis program. In: Computers in Cardiology, 2005, pp. 451–454. IEEE (2016)Google Scholar
  5. 5.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)CrossRefGoogle Scholar
  6. 6.
    Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., Kitai, T.: Artificial intelligence in precision cardiovascular medicine. J. Am. Coll. Cardiol. 69(21), 2657–2664 (2017)CrossRefGoogle Scholar
  7. 7.
    Hannun, A.Y., et al.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25(1), 65 (2019)CrossRefGoogle Scholar
  8. 8.
    Attia, Z.I., et al.: Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat. Med. 25(1), 70 (2019)CrossRefGoogle Scholar
  9. 9.
    Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173 (2008)CrossRefGoogle Scholar
  10. 10.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)Google Scholar
  11. 11.
    The First China ECG Intelligent Competition. http://mdi.ids.tsinghua.edu.cn/#/. Accessed 13 July 2019
  12. 12.
    Lin, Y., Brunner, C., Sajda, P., Faller, J.: SigViewer: visualizing multimodal signals stored in XDF (Extensible Data Format) files. arXiv preprint arXiv:1708.06333. 12 Aug 2017
  13. 13.
    EcgEditor. https://github.com/Unisens/EcgEditor. Accessed 13 July 2019
  14. 14.
    ECG Viewer. https://github.com/jramshur/ECG_Viewer. Accessed 13 July 2019
  15. 15.
    BSS_ECG. https://github.com/AdnanHidic/bss_ecg. Accessed 13 July 2019
  16. 16.
    Winslow, R.L., Granite, S., Jurado, C.: WaveformECG: a platform for visualizing, annotating, and analyzing ECG data. Comput. Sci. Eng. 18(5), 36 (2016)CrossRefGoogle Scholar
  17. 17.
    Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zijian Ding
    • 1
  • Shan Qiu
    • 1
  • Yutong Guo
    • 2
  • Jianping Lin
    • 3
    • 4
  • Li Sun
    • 3
  • Dapeng Fu
    • 5
  • Zhen Yang
    • 6
  • Chengquan Li
    • 4
  • Yang Yu
    • 7
  • Long Meng
    • 8
  • Tingting Lv
    • 4
    • 9
  • Dan Li
    • 9
  • Ping Zhang
    • 9
    • 4
    Email author
  1. 1.Department of Electronic EngineeringTsinghua UniversityBeijingChina
  2. 2.School of Information and ElectronicsBeijing Institute of TechnologyBeijingChina
  3. 3.Xinheyidian Co. Ltd.BeijingChina
  4. 4.School of Clinical MedicineTsinghua UniversityBeijingChina
  5. 5.Chinese Academy of Sciences Zhong Guan Cun HospitalBeijingChina
  6. 6.ECG CenterTianjin Wuqing District People’s HospitalTianjinChina
  7. 7.The Affiliated Hospital of Qingdao UniversityQingdaoChina
  8. 8.Shandong Mingjia Technology Co., Ltd.TaianChina
  9. 9.Department of CardiologyBeijing Tsinghua Changgung HospitalBeijingChina

Personalised recommendations