Advertisement

A Unified Catalytic Mechanism for Cyclic di-NMP Hydrolysis by DHH–DHHA1 Phosphodiesterases

  • Lichuan GuEmail author
  • Qing He
Chapter
  • 113 Downloads

Abstract

Cyclic di-AMP is a vital second messenger other than cyclic di-GMP that regulates diverse cellular physiological processes in many bacteria. Its cellular level is controlled by the counter-actions of diadenylate cyclases (DAC) and phosphodiesterases (PDE). Three kinds of PDEs have been identified to date that contain either a DHH–DHHA1 domain, an HD domain, or a metallo-phosphoesterase domain, respectively. The DHH–DHHA1 PDEs are of special interest because of their functional diversity. They can be further subdivided into either membrane-bound GdpP or stand-alone Rv2837c phosphodiesterase, which degrade cyclic di-AMP into linear 5′-pApA and AMP, respectively. The DHH–DHHA1 PDEs can also hydrolyze other cyclic di-NMPs (cyclic di-GMP or cGAMP) with low activity. In this chapter, we review the structures and functions of the DHH–DHHA1 domain of GdpP and Rv2837c that we reported in recent years. According to detailed structural and enzymatic analyses, we have summarized a unified molecular mechanism for the DHH–DHHA1 PDEs and systematically analyzed the catalytic activities of DHH–DHHA1 PDEs on other cyclic di-NMPs (cyclic di-GMP and cGAMP).

Keywords

Cyclic di-AMP Cyclic di-GMP PDEs DHH–DHHA1 GdpP Rv2837c 

References

  1. 1.
    Cotter PA, Stibitz S (2007) c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10(1):17–23.  https://doi.org/10.1016/j.mib.2006.12.006 CrossRefPubMedGoogle Scholar
  2. 2.
    Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, Yildiz FH, Sondermann H (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327(5967):866–868.  https://doi.org/10.1126/science.1181185 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Witte G, Hartung S, Buttner K, Hopfner KP (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30(2):167–178.  https://doi.org/10.1016/j.molcel.2008.02.020 CrossRefPubMedGoogle Scholar
  4. 4.
    Corrigan RM, Grundling A (2013) Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11(8):513–524.  https://doi.org/10.1038/nrmicro3069 CrossRefPubMedGoogle Scholar
  5. 5.
    Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stulke J (2015) A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 97(2):189–204.  https://doi.org/10.1111/mmi.13026 CrossRefPubMedGoogle Scholar
  6. 6.
    Davies BW, Bogard RW, Young TS, Mekalanos JJ (2012) Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149(2):358–370.  https://doi.org/10.1016/j.cell.2012.01.053 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nelson JW, Sudarsan N, Phillips GE, Stav S, Lunse CE, McCown PJ, Breaker RR (2015) Control of bacterial exoelectrogenesis by c-AMP-GMP. Proc Natl Acad Sci USA 112(17):5389–5394.  https://doi.org/10.1073/pnas.1419264112 CrossRefPubMedGoogle Scholar
  8. 8.
    Sun LJ, Wu JX, Du FH, Chen X, Chen ZJJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791.  https://doi.org/10.1126/science.1232458 CrossRefPubMedGoogle Scholar
  9. 9.
    Kranzusch PJ, Wilson SC, Lee AS, Berger JM, Doudna JA, Vance RE (2015) Ancient origin of cGAS-STING reveals mechanism of universal 2′,3′ cGAMP signaling. Mol Cell 59(6):891–903.  https://doi.org/10.1016/j.molcel.2015.07.022 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xiao TS, Fitzgerald KA (2013) The cGAS-STING pathway for DNA sensing. Mol Cell 51(2):135–139.  https://doi.org/10.1016/j.molcel.2013.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Margolis SR, Wilson SC, Vance RE (2017) Evolutionary origins of cGAS-STING signaling. Trends Immunol 38(10):733–743.  https://doi.org/10.1016/j.it.2017.03.004 CrossRefPubMedGoogle Scholar
  12. 12.
    Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15(5):271–284.  https://doi.org/10.1038/nrmicro.2016.190 CrossRefPubMedGoogle Scholar
  13. 13.
    Huynh TN, Luo S, Pensinger D, Sauer JD, Tong L, Woodward JJ (2015) An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proc Natl Acad Sci USA 112(7):E747–E756.  https://doi.org/10.1073/pnas.1416485112 CrossRefPubMedGoogle Scholar
  14. 14.
    Andrade WA, Firon A, Schmidt T, Hornung V, Fitzgerald KA, Kurt-Jones EA, Trieu-Cuot P, Golenbock DT, Kaminski PA (2016) Group B streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. Cell Host Microbe 20(1):49–59.  https://doi.org/10.1016/j.chom.2016.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    He Q, Wang F, Liu SH, Zhu DY, Cong HJ, Gao F, Li BQ, Wang HW, Lin Z, Liao J, Gu LC (2016) Structural and biochemical insight into the mechanism of Rv2837c from Mycobacterium tuberculosis as a c-di-NMP phosphodiesterase (vol 291, pg 3668, 2016). J Biol Chem 291(27):14386–14387.  https://doi.org/10.1074/jbc.A115.699801 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gao A, Serganov A (2014) Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat Chem Biol 10(9):787–792.  https://doi.org/10.1038/Nchembio.1607 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT, Sauer JD, Tong L, Woodward JJ (2014) The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158(6):1389–1401.  https://doi.org/10.1016/j.cell.2014.07.046 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Aravind L, Koonin EV (1998) A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. Trends Biochem Sci 23(1):17–19CrossRefGoogle Scholar
  19. 19.
    Makarova KS, Koonin EV, Kelman Z (2012) The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol Direct 7:7.  https://doi.org/10.1186/1745-6150-7-7 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Feng L, Chang CC, Song D, Jiang C, Song Y, Wang CF, Deng W, Zou YJ, Chen HF, Xiao X, Wang FP, Liu XP (2018) The trimeric Hef-associated nuclease HAN is a 3′→5′ exonuclease and is probably involved in DNA repair. Nucleic Acids Res 46(17):9027–9043.  https://doi.org/10.1093/nar/gky707 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rao F, See RY, Zhang DW, Toh DC, Ji Q, Liang ZX (2010) YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J Biol Chem 285(1):473–482.  https://doi.org/10.1074/jbc.M109.040238 CrossRefPubMedGoogle Scholar
  22. 22.
    Bai Y, Yang J, Eisele LE, Underwood AJ, Koestler BJ, Waters CM, Metzger DW, Bai G (2013) Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence. J Bacteriol 195(22):5123–5132.  https://doi.org/10.1128/JB.00769-13 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Corrigan RM, Abbott JC, Burhenne H, Kaever V, Grundling A (2011) c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7(9):e1002217.  https://doi.org/10.1371/journal.ppat.1002217 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Huynh TN, Woodward JJ (2016) Too much of a good thing: regulated depletion of c-di-AMP in the bacterial cytoplasm. Curr Opin Microbiol 30:22–29.  https://doi.org/10.1016/j.mib.2015.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang F, He Q, Su KX, Wei TD, Xu SJ, Gu LC (2018) Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase. Biochem J 475:191–205.  https://doi.org/10.1042/Bcj20170739 CrossRefPubMedGoogle Scholar
  26. 26.
    Postic G, Danchin A, Mechold U (2012) Characterization of NrnA homologs from Mycobacterium tuberculosis and Mycoplasma pneumoniae. RNA 18(1):155–165.  https://doi.org/10.1261/rna.029132.111 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Srivastav R, Kumar D, Grover A, Singh A, Manjasetty BA, Sharma R, Taneja B (2014) Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases. Nucleic Acids Res 42(12):7894–7910.  https://doi.org/10.1093/nar/gku425 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yang J, Bai Y, Zhang Y, Gabrielle VD, Jin L, Bai G (2014) Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection. Mol Microbiol 93(1):65–79.  https://doi.org/10.1111/mmi.12641 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Drexler DJ, Muller M, Rojas-Cordova CA, Bandera AM, Witte G (2017) Structural and biophysical analysis of the soluble DHH/DHHA1-type phosphodiesterase TM1595 from Thermotoga maritima. Structure 25(12):1887–1897.  https://doi.org/10.1016/j.str.2017.10.001 CrossRefPubMedGoogle Scholar
  30. 30.
    Uemura Y, Nakagawa N, Wakamatsu T, Kim K, Montelione GT, Hunt JF, Kuramitsu S, Masui R (2013) Crystal structure of the ligand-binding form of nanoRNase from Bacteroides fragilis, a member of the DHH/DHHA1 phosphoesterase family of proteins. FEBS Lett 587(16):2669–2674.  https://doi.org/10.1016/j.febslet.2013.06.053 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoPeople’s Republic of China

Personalised recommendations