Advertisement

2′,3′-Cyclic Mononucleotide Metabolism and Possible Roles in Bacterial Physiology

  • Benjamin M. Fontaine
  • Yashasvika Duggal
  • Emily E. WeinertEmail author
Chapter
  • 115 Downloads

Abstract

Novel intracellular small molecules, 2′,3′-cyclic nucleotide monophosphates (2′,3′-cNMPs), have recently been discovered within both prokaryotes and eukaryotes. Within plants and mammals, wounding has been found to increase levels of 2′,3′-cNMPs. Initial studies in prokaryotes have identified both intra- and extracellular 2′,3′-cNMPs within bacterial culture, with recent work demonstrating that 2′,3′-cNMP levels affect bacterial gene expression to impact phenotypes such as biofilm formation. The enzyme responsible for 2′,3′-cNMP production in Escherichia coli has been identified and proteins potentially involved in 2′,3′-cNMP hydrolysis are currently under investigation. Furthermore, the development of tools to modulate 2′,3′-cNMP levels in bacteria now allows for directly probing the effects of altered 2′,3′-cNMP concentrations in bacteria. Controlled perturbation of 2′,3′-cNMP pools in tandem with gene expression analyses highlighted potential signaling pathways and identify other proteins involved in 2′,3′-cNMP metabolism and sensing. By dissecting the cellular roles of 2′,3′-cNMPs within bacteria, these ongoing studies highlight novel pathways within prokaryotes which potentially can be engineered to control bacterial proliferation.

Keywords

2′,3′-Cyclic nucleotide monophosphate Biofilm formation RNA degradation RNase I Nucleotide signaling 

Notes

Acknowledgments

This work was supported by NIH 1R01GM125842 (EEW) and Emory University. The authors thank members of the Weinert Laboratory for helpful suggestions.

References

  1. 1.
    Lopez-Maury L, Marguerat S, Bahler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9(8):583–593.  https://doi.org/10.1038/nrg2398 PubMedCrossRefGoogle Scholar
  2. 2.
    Wick LM, Egli T (2004) Molecular components of physiological stress responses in Escherichia coli. Adv Biochem Eng Biotechnol 89:1–45PubMedGoogle Scholar
  3. 3.
    Guo MS, Gross CA (2014) Stress-induced remodeling of the bacterial proteome. Curr Biol 24(10):R424–R434.  https://doi.org/10.1016/j.cub.2014.03.023 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34(2):659–666.  https://doi.org/10.1093/nar/gkj472 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Takayama K, Kjelleberg S (2000) The role of RNA stability during bacterial stress responses and starvation. Environ Microbiol 2(4):355–365PubMedCrossRefGoogle Scholar
  6. 6.
    McGary K, Nudler E (2013) RNA polymerase and the ribosome: the close relationship. Curr Opin Microbiol 16(2):112–117.  https://doi.org/10.1016/j.mib.2013.01.010 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jackson E (2011) The 2',3'-cAMP-adenosine pathway. Am J Physiol Renal Physiol 301(6):F1160–F1167.  https://doi.org/10.1152/ajprenal.00450.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Thompson J, Venegas F, Raines R (1994) Energetics of catalysis by ribonucleases: fate of the 2',3'-cyclic phosphodiester intermediate. Biochemistry 33(23):7408–7414.  https://doi.org/10.1021/bi00189a047 PubMedCrossRefGoogle Scholar
  9. 9.
    Jackson EK, Gillespie DG (2012) Extracellular 2',3'-cAMP and 3',5'-cAMP stimulate proliferation of preglomerular vascular endothelial cells and renal epithelial cells. Am J Physiol Renal Physiol 303(7):F954–F962.  https://doi.org/10.1152/ajprenal.00335.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Jackson EK, Gillespie DG (2013) Extracellular 2',3'-cAMP-adenosine pathway in proximal tubular, thick ascending limb, and collecting duct epithelial cells. Am J Physiol Renal Physiol 304(1):F49–F55.  https://doi.org/10.1152/ajprenal.00571.2012 PubMedCrossRefGoogle Scholar
  11. 11.
    Jackson EK, Ren J, Gillespie DG (2011) 2',3'-cAMP, 3'-AMP, and 2'-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors. Am J Physiol Heart Circ Physiol 301(2):H391–H401.  https://doi.org/10.1152/ajpheart.00336.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Azarashvili T, Krestinina O, Galvita A, Grachev D, Baburina Y, Stricker R, Evtodienko Y, Reiser G (2009) Ca2+-dependent permeability transition regulation in rat brain mitochondria by 2',3'-cyclic nucleotides and 2',3'-cyclic nucleotide 3'-phosphodiesterase. Am J Physiol Cell Physiol 296(6):C1428–C1439.  https://doi.org/10.1152/ajpcell.00006.2009 PubMedCrossRefGoogle Scholar
  13. 13.
    Jackson EK, Gillespie DG, Mi ZC, Cheng DM, Bansal R, Janesko-Feldman K, Kochanek PM (2014) Role of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the renal 2',3'-cAMP-adenosine pathway. Am J Physiol Renal Physiol 307(1):F14–F24PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bahre H, Kaever V (2014) Measurement of 2',3'-cyclic nucleotides by liquid chromatography-tandem mass spectrometry in cells. J Chromatogr B 964:208–211CrossRefGoogle Scholar
  15. 15.
    Jia X, Fontaine BM, Strobel F, Weinert EE (2014) A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: basal levels of eight cNMPs and identification of 2',3'-cIMP. Biomol Ther 4(4):1070–1092Google Scholar
  16. 16.
    Ren J, Mi Z, Stewart N, Jackson E (2009) Identification and quantification of 2',3'-cAMP release by the kidney. J Pharmacol Exp Ther 328(3):855–865.  https://doi.org/10.1124/jpet.108.146712 PubMedCrossRefGoogle Scholar
  17. 17.
    Jackson E, Ren J, Mi Z (2009) Extracellular 2',3'-cAMP is a source of adenosine. J Biol Chem 284(48):33097–33106.  https://doi.org/10.1074/jbc.M109.053876 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Jackson E, Ren J, Cheng D, Mi Z (2011) Extracellular cAMP-adenosine pathways in the mouse kidney. Am J Physiol Renal Physiol 301(3):F565–F573.  https://doi.org/10.1152/ajprenal.00094.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Thompson R (1992) 2',3'-cyclic nucleotide-3'-phosphohydrolase and signal transduction in central-nervous-system myelin. Biochem Soc Trans 20(3):621–626.  https://doi.org/10.1042/bst0200621 PubMedCrossRefGoogle Scholar
  20. 20.
    Vogel U, Thompson R (1988) Molecular-structure, localization, and possible functions of the myelin-associated enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase. J Neurochem 50(6):1667–1677.  https://doi.org/10.1111/j.1471-4159.1988.tb02461.x PubMedCrossRefGoogle Scholar
  21. 21.
    Verrier J, Jackson T, Gillespie D, Janesko-Feldman K, Bansal R, Goebbels S, Nave K, Kochanek P, Jackson E (2013) Role of CNPase in the oligodendrocytic extracellular 2,3-cAMP-adenosine pathway. Glia 61(10):1595–1606.  https://doi.org/10.1002/glia.22523 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Luhtala N, Parker R (2010) T2 Family ribonucleases: ancient enzymes with diverse roles. Trends Biochem Sci 35(5):253–259.  https://doi.org/10.1016/j.tibs.2010.02.002 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Van Damme T, Blancquaert D, Couturon P, Van der Straeten D, Sandra P, Lynen F (2014) Wounding stress causes rapid increase in concentration of the naturally occurring 2',3'-isomers of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues. Phytochemistry 103:59–66PubMedCrossRefGoogle Scholar
  24. 24.
    Kosmacz M, Luzarowski M, Kerber O, Leniak E, Gutierrez-Beltran E, Beltran JCM, Gorka M, Szlachetko J, Veyel D, Graf A, Skirycz A (2018) Interaction of 2',3'-cAMP with Rbp47b plays a role in stress granule formation. Plant Physiol 177(1):411–421PubMedPubMedCentralGoogle Scholar
  25. 25.
    Lorkovic Z, Kirk D, Klahre U, Hemmings-Mieszczak M, Filipowicz W (2000) RBP45 and RBP47, two oligouridylate-specific hnRNP-like proteins interacting with poly(A)(+) RNA in nuclei of plant cells. RNA 6(11):1610–1624.  https://doi.org/10.1017/S1355838200001163 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wade H (1961) Autodegradation of ribonucleoprotein in Escherichia coli. Biochem J 78(3):457–472PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bordeleau E, Oberc C, Ameen E, da Silva A, Yan H (2014) Identification of cytidine 2',3'-cyclic monophosphate and uridine 2',3'-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture. Bioorg Med Chem Lett 24(18):4520–4522.  https://doi.org/10.1016/j.bmcl.2014.07.080 PubMedCrossRefGoogle Scholar
  28. 28.
    Liu A, Yu Y, Sheng Q, Zheng X, Yang J, Li P, Shi M, Zhou B, Zhang Y, Chen X (2016) Identification of four kinds of 2',3'-cNMPs in Escherichia coli and a method for their preparation. ACS Chem Biol 11(9):2414–2419.  https://doi.org/10.1021/acschembio.6b00426 PubMedCrossRefGoogle Scholar
  29. 29.
    Fontaine BM, Martin KS, Garcia-Rodriguez JM, Jung C, Southwell JE, Jia X, Weinert EE (2018) RNase I regulates Escherichia coli 2',3'-cyclic nucleotide monophosphate levels and biofilm formation. Biochem J 478(8):1491–1506CrossRefGoogle Scholar
  30. 30.
    Paul K, Nieto V, Carlquist W, Blair D, Harshey R (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell 38(1):128–139.  https://doi.org/10.1016/j.molcel.2010.03.001 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Yamaguchi Y, Park JH, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45(45):61–79PubMedCrossRefGoogle Scholar
  32. 32.
    Elson D (1959) Latent enzymic activity of a ribonucleoprotein from Escherichia coli. Biochim Biophys Acta 36(2):372–386.  https://doi.org/10.1016/0006-3002(59)90179-9 PubMedCrossRefGoogle Scholar
  33. 33.
    Abrell J (1971) Ribonuclease I released from Esherichia coli by osmotic shock. Arch Biochem Biophys 142(2):693–700.  https://doi.org/10.1016/0003-9861(71)90535-2 PubMedCrossRefGoogle Scholar
  34. 34.
    Meador J, Cannon B, Cannistraro V, Kennell D (1990) Purification and characterization of Escherichia coli RNase I: comparisons with RNase M. Eur J Biochem 187(3):549–553.  https://doi.org/10.1111/j.1432-1033.1990.tb15336.x PubMedCrossRefGoogle Scholar
  35. 35.
    Neu H, Heppel L (1964) Release of ribonuclease into medium when Escherichia coli cells are converted to spheroplasts. J Biol Chem 239(11):3893–3900PubMedGoogle Scholar
  36. 36.
    Spahr P, Hollingworth B (1961) Purification and mechanism of action of ribonuclease from Escherichia coli ribosomes. J Biol Chem 236(3):823–831Google Scholar
  37. 37.
    Cannistraro V, Kennell D (1991) RNase I∗, a form of RNase I, and messenger RNA degradation in Escherichia coli. J Bacteriol 173(15):4653–4659PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Meador J, Kennell D (1990) Cloning and sequencing the gene encoding Escherichia coli ribonuclease I: exact physical mapping using the genome library. Gene 95:1–7PubMedCrossRefGoogle Scholar
  39. 39.
    Beppu T, Arima K (1969) Induction by mercuric ion of extensive degradation of cellular ribonucleic acid in Escherichia coli. J Bacteriol 98(3):888–897PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kaplan R, Apirion D (1974) Involvement of ribonuclease I, ribonuclease II, and polynucleotide phosphorylation in degradation of stable ribonucleic acid during carbon starvation in Escherichia coli. J Biol Chem 249(1):149–151PubMedGoogle Scholar
  41. 41.
    Maruyama H, Mizuno D (1965) Participation of ribonuclease in degradation of Escherichia coli ribosomal ribonucleic acid revealed by oligonucleotide accumulation in phosphorous-deficient stage. Biochim Biophys Acta 108(4):593.  https://doi.org/10.1016/0005-2787(65)90056-0 PubMedCrossRefGoogle Scholar
  42. 42.
    Wade H, Robinson H, Lovett S (1964) Autodegradation of 32P-labelled ribosome from Escherichia coli. Biochem J 93(1):121–128PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kitahara K, Miyazaki K (2011) Specific inhibition of bacterial RNase T2 by helix 41 of 16S ribosomal RNA. Nat Commun 2.  https://doi.org/10.1038/ncomms1553
  44. 44.
    Anraku Y (1964) New cyclic phosphodiesterase having 3′-nucleotidase activity from Escherichia coli B: I. Purification and some properties of the enzyme. J Biol Chem 239(10):3412–3419PubMedGoogle Scholar
  45. 45.
    Anraku Y (1964) New cyclic phosphodiesterase having 3′-nucleotidase activity from Escherichia coli B.2. Further studies on substrate specificity and mod of action of the enzyme. J Biol Chem 239(10):3420–3424PubMedGoogle Scholar
  46. 46.
    Anraku Y, Mizuno D (1967) Ribonuclease-cyclic phosphodiesterase system in Escherichia coli. J Biochem 61(1):81–88PubMedCrossRefGoogle Scholar
  47. 47.
    Nagata M, Kaito C, Sekimizu K (2008) Phosphodiesterase activity of CvfA is required for virulence in Staphylococcus aureus. J Biol Chem 283(4):2176–2184.  https://doi.org/10.1074/jbc.M705309200 PubMedCrossRefGoogle Scholar
  48. 48.
    Podzelinska K, He S, Wathier M, Yakunin A, Proudfoot M, Hove-Jensen B, Zechel D, Jia Z (2009) Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation. J Biol Chem 284(25):17216–17226.  https://doi.org/10.1074/jbc.M808392200 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Shin D, Proudfoot M, Lim H, Choi I, Yokota H, Yakunin A, Kim R, Kim S (2008) Structural and enzymatic characterization of DR1281: a calcineurin-like phosphoesterase from Deinococcus radiodurans. Proteins Struct Funct Bioinf 70(3):1000–1009.  https://doi.org/10.1002/prot.21584 CrossRefGoogle Scholar
  50. 50.
    Rao F, Qi Y, Murugan E, Pasunooti S, Ji Q (2010) 2',3'-cAMP hydrolysis by metal-dependent phosphodiesterases containing DHH, EAL, and HD domains is non-specific: Implications for PDE screening. Biochem Biophys Res Commun 398(3):500–505.  https://doi.org/10.1016/j.bbrc.2010.06.107 PubMedCrossRefGoogle Scholar
  51. 51.
    Abel S, Nurnberger T, Ahnert V, Krauss G, Glund K (2000) Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol 122(2):543–552.  https://doi.org/10.1104/pp.122.2.543 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Nurnberger T, Abel S, Jost W, Glund K (1990) Induction of an extracellular ribonuclease in cultured tomato cells upon phosphate starvation. Plant Physiol 92(4):970–976.  https://doi.org/10.1104/pp.92.4.970 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Volkmer B, Heinemann M (2011) Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS One 6(7).  https://doi.org/10.1371/journal.pone.0023126 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Proudfoot M, Kuznetsova E, Brown G, Rao N, Kitagawa M, Mori H, Savchenko A, Yakunin A (2004) General enzymatic screens identify three new nucleotidases in Escherichia coli – biochemical characterization of SurE, YfbR, and YjjG. J Biol Chem 279(52):54687–54694.  https://doi.org/10.1074/jbc.M411023200 PubMedCrossRefGoogle Scholar
  55. 55.
    Bennett B, Kimball E, Gao M, Osterhout R, Van Dien S, Rabinowitz J (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5(8):593–599.  https://doi.org/10.1038/nchembio.186 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Buckstein M, He J, Rubin H (2008) Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J Bacteriol 190(2):718–726.  https://doi.org/10.1128/JB.01020-07 PubMedCrossRefGoogle Scholar
  57. 57.
    Myllykoski M, Kursula P (2010) Expression, pufication, and initial characterization of different domains of recombinant mouse 2′,3′-cyclic nucleotide 3′-phosphodiesterase, an enigmatic enzyme from the myelin sheath. BMC Res Notes 3:12PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Barnhart M, Chapman M (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147.  https://doi.org/10.1146/annurev.micro.60.080805.142106 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Antoniani D, Rossi E, Rinaldo S, Bocci P, Lolicato M, Paiardini A, Raffaelli N, Cutruzzola F, Landini P (2013) The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability. Appl Microbiol Biotechnol 97(16):7325–7336.  https://doi.org/10.1007/s00253-013-4875-0 PubMedCrossRefGoogle Scholar
  60. 60.
    Attila C, Ueda A, Wood T (2009) 5-Fluorouracil reduces biofilm formation in Escherichia coli K-12 through global regulator AriR as an antivirulence compound. Appl Microbiol Biotechnol 82(3):525–533.  https://doi.org/10.1007/s00253-009-1860-8 PubMedCrossRefGoogle Scholar
  61. 61.
    Garavaglia M, Rossi E, Landini P (2012) The pyrimidine nucleotide biosynthetic pathway modulates production of biofilm determinants in Escherichia coli. PLoS One 7(2).  https://doi.org/10.1371/journal.pone.0031252 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Haugo A, Watnick P (2002) Vibrio cholerae CytR is a repressor of biofilm development. Mol Microbiol 45(2):471–483.  https://doi.org/10.1046/j.1365-2958.2002.03023.x PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ueda A, Attila C, Whiteley M, Wood T (2009) Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microb Biotechnol 2(1):62–74.  https://doi.org/10.1111/j.1751-7915.2008.00060.x PubMedCrossRefGoogle Scholar
  64. 64.
    Notley-McRobb L, Death A, Ferenci T (1997) The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase. Microbiology 143:1909–1918PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Benjamin M. Fontaine
    • 1
  • Yashasvika Duggal
    • 1
    • 2
  • Emily E. Weinert
    • 2
    Email author
  1. 1.Department of ChemistryEmory UniversityAtlantaUSA
  2. 2.Departments of Biochemistry and Molecular Biology and ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations