2′,3′-Cyclic Mononucleotide Metabolism and Possible Roles in Bacterial Physiology

  • Benjamin M. Fontaine
  • Yashasvika Duggal
  • Emily E. WeinertEmail author


Novel intracellular small molecules, 2′,3′-cyclic nucleotide monophosphates (2′,3′-cNMPs), have recently been discovered within both prokaryotes and eukaryotes. Within plants and mammals, wounding has been found to increase levels of 2′,3′-cNMPs. Initial studies in prokaryotes have identified both intra- and extracellular 2′,3′-cNMPs within bacterial culture, with recent work demonstrating that 2′,3′-cNMP levels affect bacterial gene expression to impact phenotypes such as biofilm formation. The enzyme responsible for 2′,3′-cNMP production in Escherichia coli has been identified and proteins potentially involved in 2′,3′-cNMP hydrolysis are currently under investigation. Furthermore, the development of tools to modulate 2′,3′-cNMP levels in bacteria now allows for directly probing the effects of altered 2′,3′-cNMP concentrations in bacteria. Controlled perturbation of 2′,3′-cNMP pools in tandem with gene expression analyses highlighted potential signaling pathways and identify other proteins involved in 2′,3′-cNMP metabolism and sensing. By dissecting the cellular roles of 2′,3′-cNMPs within bacteria, these ongoing studies highlight novel pathways within prokaryotes which potentially can be engineered to control bacterial proliferation.


2′,3′-Cyclic nucleotide monophosphate Biofilm formation RNA degradation RNase I Nucleotide signaling 



This work was supported by NIH 1R01GM125842 (EEW) and Emory University. The authors thank members of the Weinert Laboratory for helpful suggestions.


  1. 1.
    Lopez-Maury L, Marguerat S, Bahler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9(8):583–593. PubMedCrossRefGoogle Scholar
  2. 2.
    Wick LM, Egli T (2004) Molecular components of physiological stress responses in Escherichia coli. Adv Biochem Eng Biotechnol 89:1–45PubMedGoogle Scholar
  3. 3.
    Guo MS, Gross CA (2014) Stress-induced remodeling of the bacterial proteome. Curr Biol 24(10):R424–R434. PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34(2):659–666. PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Takayama K, Kjelleberg S (2000) The role of RNA stability during bacterial stress responses and starvation. Environ Microbiol 2(4):355–365PubMedCrossRefGoogle Scholar
  6. 6.
    McGary K, Nudler E (2013) RNA polymerase and the ribosome: the close relationship. Curr Opin Microbiol 16(2):112–117. PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jackson E (2011) The 2',3'-cAMP-adenosine pathway. Am J Physiol Renal Physiol 301(6):F1160–F1167. PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Thompson J, Venegas F, Raines R (1994) Energetics of catalysis by ribonucleases: fate of the 2',3'-cyclic phosphodiester intermediate. Biochemistry 33(23):7408–7414. PubMedCrossRefGoogle Scholar
  9. 9.
    Jackson EK, Gillespie DG (2012) Extracellular 2',3'-cAMP and 3',5'-cAMP stimulate proliferation of preglomerular vascular endothelial cells and renal epithelial cells. Am J Physiol Renal Physiol 303(7):F954–F962. PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Jackson EK, Gillespie DG (2013) Extracellular 2',3'-cAMP-adenosine pathway in proximal tubular, thick ascending limb, and collecting duct epithelial cells. Am J Physiol Renal Physiol 304(1):F49–F55. PubMedCrossRefGoogle Scholar
  11. 11.
    Jackson EK, Ren J, Gillespie DG (2011) 2',3'-cAMP, 3'-AMP, and 2'-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors. Am J Physiol Heart Circ Physiol 301(2):H391–H401. PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Azarashvili T, Krestinina O, Galvita A, Grachev D, Baburina Y, Stricker R, Evtodienko Y, Reiser G (2009) Ca2+-dependent permeability transition regulation in rat brain mitochondria by 2',3'-cyclic nucleotides and 2',3'-cyclic nucleotide 3'-phosphodiesterase. Am J Physiol Cell Physiol 296(6):C1428–C1439. PubMedCrossRefGoogle Scholar
  13. 13.
    Jackson EK, Gillespie DG, Mi ZC, Cheng DM, Bansal R, Janesko-Feldman K, Kochanek PM (2014) Role of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the renal 2',3'-cAMP-adenosine pathway. Am J Physiol Renal Physiol 307(1):F14–F24PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bahre H, Kaever V (2014) Measurement of 2',3'-cyclic nucleotides by liquid chromatography-tandem mass spectrometry in cells. J Chromatogr B 964:208–211CrossRefGoogle Scholar
  15. 15.
    Jia X, Fontaine BM, Strobel F, Weinert EE (2014) A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: basal levels of eight cNMPs and identification of 2',3'-cIMP. Biomol Ther 4(4):1070–1092Google Scholar
  16. 16.
    Ren J, Mi Z, Stewart N, Jackson E (2009) Identification and quantification of 2',3'-cAMP release by the kidney. J Pharmacol Exp Ther 328(3):855–865. PubMedCrossRefGoogle Scholar
  17. 17.
    Jackson E, Ren J, Mi Z (2009) Extracellular 2',3'-cAMP is a source of adenosine. J Biol Chem 284(48):33097–33106. PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Jackson E, Ren J, Cheng D, Mi Z (2011) Extracellular cAMP-adenosine pathways in the mouse kidney. Am J Physiol Renal Physiol 301(3):F565–F573. PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Thompson R (1992) 2',3'-cyclic nucleotide-3'-phosphohydrolase and signal transduction in central-nervous-system myelin. Biochem Soc Trans 20(3):621–626. PubMedCrossRefGoogle Scholar
  20. 20.
    Vogel U, Thompson R (1988) Molecular-structure, localization, and possible functions of the myelin-associated enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase. J Neurochem 50(6):1667–1677. PubMedCrossRefGoogle Scholar
  21. 21.
    Verrier J, Jackson T, Gillespie D, Janesko-Feldman K, Bansal R, Goebbels S, Nave K, Kochanek P, Jackson E (2013) Role of CNPase in the oligodendrocytic extracellular 2,3-cAMP-adenosine pathway. Glia 61(10):1595–1606. PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Luhtala N, Parker R (2010) T2 Family ribonucleases: ancient enzymes with diverse roles. Trends Biochem Sci 35(5):253–259. PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Van Damme T, Blancquaert D, Couturon P, Van der Straeten D, Sandra P, Lynen F (2014) Wounding stress causes rapid increase in concentration of the naturally occurring 2',3'-isomers of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues. Phytochemistry 103:59–66PubMedCrossRefGoogle Scholar
  24. 24.
    Kosmacz M, Luzarowski M, Kerber O, Leniak E, Gutierrez-Beltran E, Beltran JCM, Gorka M, Szlachetko J, Veyel D, Graf A, Skirycz A (2018) Interaction of 2',3'-cAMP with Rbp47b plays a role in stress granule formation. Plant Physiol 177(1):411–421PubMedPubMedCentralGoogle Scholar
  25. 25.
    Lorkovic Z, Kirk D, Klahre U, Hemmings-Mieszczak M, Filipowicz W (2000) RBP45 and RBP47, two oligouridylate-specific hnRNP-like proteins interacting with poly(A)(+) RNA in nuclei of plant cells. RNA 6(11):1610–1624. PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wade H (1961) Autodegradation of ribonucleoprotein in Escherichia coli. Biochem J 78(3):457–472PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bordeleau E, Oberc C, Ameen E, da Silva A, Yan H (2014) Identification of cytidine 2',3'-cyclic monophosphate and uridine 2',3'-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture. Bioorg Med Chem Lett 24(18):4520–4522. PubMedCrossRefGoogle Scholar
  28. 28.
    Liu A, Yu Y, Sheng Q, Zheng X, Yang J, Li P, Shi M, Zhou B, Zhang Y, Chen X (2016) Identification of four kinds of 2',3'-cNMPs in Escherichia coli and a method for their preparation. ACS Chem Biol 11(9):2414–2419. PubMedCrossRefGoogle Scholar
  29. 29.
    Fontaine BM, Martin KS, Garcia-Rodriguez JM, Jung C, Southwell JE, Jia X, Weinert EE (2018) RNase I regulates Escherichia coli 2',3'-cyclic nucleotide monophosphate levels and biofilm formation. Biochem J 478(8):1491–1506CrossRefGoogle Scholar
  30. 30.
    Paul K, Nieto V, Carlquist W, Blair D, Harshey R (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell 38(1):128–139. PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Yamaguchi Y, Park JH, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45(45):61–79PubMedCrossRefGoogle Scholar
  32. 32.
    Elson D (1959) Latent enzymic activity of a ribonucleoprotein from Escherichia coli. Biochim Biophys Acta 36(2):372–386. PubMedCrossRefGoogle Scholar
  33. 33.
    Abrell J (1971) Ribonuclease I released from Esherichia coli by osmotic shock. Arch Biochem Biophys 142(2):693–700. PubMedCrossRefGoogle Scholar
  34. 34.
    Meador J, Cannon B, Cannistraro V, Kennell D (1990) Purification and characterization of Escherichia coli RNase I: comparisons with RNase M. Eur J Biochem 187(3):549–553. PubMedCrossRefGoogle Scholar
  35. 35.
    Neu H, Heppel L (1964) Release of ribonuclease into medium when Escherichia coli cells are converted to spheroplasts. J Biol Chem 239(11):3893–3900PubMedGoogle Scholar
  36. 36.
    Spahr P, Hollingworth B (1961) Purification and mechanism of action of ribonuclease from Escherichia coli ribosomes. J Biol Chem 236(3):823–831Google Scholar
  37. 37.
    Cannistraro V, Kennell D (1991) RNase I∗, a form of RNase I, and messenger RNA degradation in Escherichia coli. J Bacteriol 173(15):4653–4659PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Meador J, Kennell D (1990) Cloning and sequencing the gene encoding Escherichia coli ribonuclease I: exact physical mapping using the genome library. Gene 95:1–7PubMedCrossRefGoogle Scholar
  39. 39.
    Beppu T, Arima K (1969) Induction by mercuric ion of extensive degradation of cellular ribonucleic acid in Escherichia coli. J Bacteriol 98(3):888–897PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kaplan R, Apirion D (1974) Involvement of ribonuclease I, ribonuclease II, and polynucleotide phosphorylation in degradation of stable ribonucleic acid during carbon starvation in Escherichia coli. J Biol Chem 249(1):149–151PubMedGoogle Scholar
  41. 41.
    Maruyama H, Mizuno D (1965) Participation of ribonuclease in degradation of Escherichia coli ribosomal ribonucleic acid revealed by oligonucleotide accumulation in phosphorous-deficient stage. Biochim Biophys Acta 108(4):593. PubMedCrossRefGoogle Scholar
  42. 42.
    Wade H, Robinson H, Lovett S (1964) Autodegradation of 32P-labelled ribosome from Escherichia coli. Biochem J 93(1):121–128PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kitahara K, Miyazaki K (2011) Specific inhibition of bacterial RNase T2 by helix 41 of 16S ribosomal RNA. Nat Commun 2.
  44. 44.
    Anraku Y (1964) New cyclic phosphodiesterase having 3′-nucleotidase activity from Escherichia coli B: I. Purification and some properties of the enzyme. J Biol Chem 239(10):3412–3419PubMedGoogle Scholar
  45. 45.
    Anraku Y (1964) New cyclic phosphodiesterase having 3′-nucleotidase activity from Escherichia coli B.2. Further studies on substrate specificity and mod of action of the enzyme. J Biol Chem 239(10):3420–3424PubMedGoogle Scholar
  46. 46.
    Anraku Y, Mizuno D (1967) Ribonuclease-cyclic phosphodiesterase system in Escherichia coli. J Biochem 61(1):81–88PubMedCrossRefGoogle Scholar
  47. 47.
    Nagata M, Kaito C, Sekimizu K (2008) Phosphodiesterase activity of CvfA is required for virulence in Staphylococcus aureus. J Biol Chem 283(4):2176–2184. PubMedCrossRefGoogle Scholar
  48. 48.
    Podzelinska K, He S, Wathier M, Yakunin A, Proudfoot M, Hove-Jensen B, Zechel D, Jia Z (2009) Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation. J Biol Chem 284(25):17216–17226. PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Shin D, Proudfoot M, Lim H, Choi I, Yokota H, Yakunin A, Kim R, Kim S (2008) Structural and enzymatic characterization of DR1281: a calcineurin-like phosphoesterase from Deinococcus radiodurans. Proteins Struct Funct Bioinf 70(3):1000–1009. CrossRefGoogle Scholar
  50. 50.
    Rao F, Qi Y, Murugan E, Pasunooti S, Ji Q (2010) 2',3'-cAMP hydrolysis by metal-dependent phosphodiesterases containing DHH, EAL, and HD domains is non-specific: Implications for PDE screening. Biochem Biophys Res Commun 398(3):500–505. PubMedCrossRefGoogle Scholar
  51. 51.
    Abel S, Nurnberger T, Ahnert V, Krauss G, Glund K (2000) Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol 122(2):543–552. PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Nurnberger T, Abel S, Jost W, Glund K (1990) Induction of an extracellular ribonuclease in cultured tomato cells upon phosphate starvation. Plant Physiol 92(4):970–976. PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Volkmer B, Heinemann M (2011) Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS One 6(7). PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Proudfoot M, Kuznetsova E, Brown G, Rao N, Kitagawa M, Mori H, Savchenko A, Yakunin A (2004) General enzymatic screens identify three new nucleotidases in Escherichia coli – biochemical characterization of SurE, YfbR, and YjjG. J Biol Chem 279(52):54687–54694. PubMedCrossRefGoogle Scholar
  55. 55.
    Bennett B, Kimball E, Gao M, Osterhout R, Van Dien S, Rabinowitz J (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5(8):593–599. PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Buckstein M, He J, Rubin H (2008) Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J Bacteriol 190(2):718–726. PubMedCrossRefGoogle Scholar
  57. 57.
    Myllykoski M, Kursula P (2010) Expression, pufication, and initial characterization of different domains of recombinant mouse 2′,3′-cyclic nucleotide 3′-phosphodiesterase, an enigmatic enzyme from the myelin sheath. BMC Res Notes 3:12PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Barnhart M, Chapman M (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147. PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Antoniani D, Rossi E, Rinaldo S, Bocci P, Lolicato M, Paiardini A, Raffaelli N, Cutruzzola F, Landini P (2013) The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability. Appl Microbiol Biotechnol 97(16):7325–7336. PubMedCrossRefGoogle Scholar
  60. 60.
    Attila C, Ueda A, Wood T (2009) 5-Fluorouracil reduces biofilm formation in Escherichia coli K-12 through global regulator AriR as an antivirulence compound. Appl Microbiol Biotechnol 82(3):525–533. PubMedCrossRefGoogle Scholar
  61. 61.
    Garavaglia M, Rossi E, Landini P (2012) The pyrimidine nucleotide biosynthetic pathway modulates production of biofilm determinants in Escherichia coli. PLoS One 7(2). PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Haugo A, Watnick P (2002) Vibrio cholerae CytR is a repressor of biofilm development. Mol Microbiol 45(2):471–483. PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ueda A, Attila C, Whiteley M, Wood T (2009) Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microb Biotechnol 2(1):62–74. PubMedCrossRefGoogle Scholar
  64. 64.
    Notley-McRobb L, Death A, Ferenci T (1997) The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase. Microbiology 143:1909–1918PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Benjamin M. Fontaine
    • 1
  • Yashasvika Duggal
    • 1
    • 2
  • Emily E. Weinert
    • 2
    Email author
  1. 1.Department of ChemistryEmory UniversityAtlantaUSA
  2. 2.Departments of Biochemistry and Molecular Biology and ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations