Light-Regulated Nucleotide Second Messenger Signaling in Cyanobacteria



Photoautotrophic organisms depend on the ambient light for their growth and viability; therefore, it is not surprising that they utilize sophisticated light-regulated signaling systems to acclimate to variable light environments. Cyanobacteria are important primary producers that perform oxygenic photosynthesis in various environmental niches. Cyanobacterial genomes encode multiple and diverse photoreceptors which are often connected to second messenger signaling networks. Here, we review the current knowledge of light-regulated second messenger signaling in cyanobacteria, focusing on two examples: cyclic di-GMP signaling systems for regulation of Thermosynechococcus sessility and Synechocystis motility. We also briefly introduce the present research on various nucleotide second messenger molecules, such as cAMP, cGMP, cyclic di-GMP, cyclic di-AMP, and the alarmone (p)ppGpp in cyanobacteria. In natural conditions, incident light contains a lot of different information on wavelength, intensity, and time scales. Further understanding of second messenger signaling in cyanobacteria will uncover how cyanobacteria extract the crucial information from their light environment to regulate cellular responses of ecophysiological importance.


Cyclic di-GMP Cyanobacteria Photoreceptor Light response Optogenetic tools 



This work was supported by a grant-in-aid for Young Scientists (B) (JSPS KAKENHI grant No. 17 K15244) from the Japan Society for the Promotion of Science (GE) and by German science foundation to AW (DFG WI 2014/7–1). GE was supported by EMBO Long-Term fellowship (ALTF 274-2017).

Competing Interests

The authors declare no competing interest.


  1. 1.
    Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548. CrossRefPubMedGoogle Scholar
  2. 2.
    Shen JR (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48. CrossRefPubMedGoogle Scholar
  3. 3.
    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, Karl DM, Li WKW, Lomas MW, Veneziano D, Vera CS, Vrugt JA, Martiny AC (2013) Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A 110:9824–9829. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Knoot CJ, Ungerer J, Wangikar PP, Pakrasi HB (2018) Cyanobacteria: promising biocatalysts for sustainable chemical production. J Biol Chem 293(14):5044–5052. CrossRefPubMedGoogle Scholar
  5. 5.
    Fiedler B, Börner T, Wilde A (2005) Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors. Photochem Photobiol 81(6):1481–1488. CrossRefPubMedGoogle Scholar
  6. 6.
    Rockwell NC, Martin SS, Gulevich AG, Lagarias JC (2012) Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Biochemistry 51(7):1449–1463. CrossRefPubMedGoogle Scholar
  7. 7.
    Cao Z, Livoti E, Losi A, Gartner W (2010) A blue light-inducible phosphodiesterase activity in the cyanobacterium Synechococcus elongatus. Photochem Photobiol 86(3):606–611. CrossRefPubMedGoogle Scholar
  8. 8.
    Raffelberg S, Wang L, Gao S, Losi A, Gartner W, Nagel G (2013) A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium Microcoleus chthonoplastes PCC 7420. Biochem J 455(3):359–365. CrossRefPubMedGoogle Scholar
  9. 9.
    Ohki M, Sugiyama K, Kawai F, Tanaka H, Nihei Y, Unzai S, Takebe M, Matsunaga S, Adachi S, Shibayama N, Zhou Z, Koyama R, Ikegaya Y, Takahashi T, Tame JR, Iseki M, Park SY (2016) Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium. Proc Natl Acad Sci U S A 113(24):6659–6664. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Möglich A, Yang X, Ayers RA, Moffat K (2010) Structure and function of plant photoreceptors. Annu Rev Plant Biol 61:21–47. CrossRefPubMedGoogle Scholar
  11. 11.
    Wiltbank LB, Kehoe DM (2018) Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 17(1):37–50. CrossRefGoogle Scholar
  12. 12.
    Ikeuchi M, Ishizuka T (2008) Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci 7(10):1159–1167. CrossRefPubMedGoogle Scholar
  13. 13.
    Anders K, Essen LO (2015) The family of phytochrome-like photoreceptors: diverse, complex and multi-colored, but very useful. Curr Opin Struct Biol 35:7–16. CrossRefPubMedGoogle Scholar
  14. 14.
    Narikawa R, Ishizuka T, Muraki N, Shiba T, Kurisu G, Ikeuchi M (2013) Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Proc Natl Acad Sci U S A 110(3):918–923. CrossRefPubMedGoogle Scholar
  15. 15.
    Burgie ES, Walker JM, Phillips GN Jr, Vierstra RD (2013) A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Structure 21(1):88–97. CrossRefPubMedGoogle Scholar
  16. 16.
    Hirose Y, Rockwell NC, Nishiyama K, Narikawa R, Ukaji Y, Inomata K, Lagarias JC, Ikeuchi M (2013) Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Proc Natl Acad Sci U S A 110(13):4974–4979. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Narikawa R, Nakajima T, Aono Y, Fushimi K, Enomoto G, Ni Ni W, Itoh S, Sato M, Ikeuchi M (2015) A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Sci Rep 5:7950. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rockwell NC, Martin SS, Feoktistova K, Lagarias JC (2011) Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Proc Natl Acad Sci U S A 108(29):11854–11859. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ho MY, Soulier NT, Canniffe DP, Shen G, Bryant DA (2017) Light regulation of pigment and photosystem biosynthesis in cyanobacteria. Curr Opin Plant Biol 37:24–33. CrossRefPubMedGoogle Scholar
  20. 20.
    Agostoni M, Montgomery BL (2014) Survival strategies in the aquatic and terrestrial world: the impact of second messengers on cyanobacterial processes. Life 4(4):745–769. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15(5):271–284. CrossRefGoogle Scholar
  22. 22.
    Agostoni M, Koestler BJ, Waters CM, Williams BL, Montgomery BL (2013) Occurrence of cyclic di-GMP-modulating output domains in cyanobacteria: an illuminating perspective. mBio 4(4):e00451–e00413. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Koike H, Inoue Y (1983) Preparation of oxygen-evolving photosystem II particles from a thermophilic blue-green alga. In: The oxygen evolving system of photosynthesis. Academic Press, London, pp 257–263. CrossRefGoogle Scholar
  24. 24.
    Stolyar S, Liu Z, Thiel V, Tomsho LP, Pinel N, Nelson WC, Lindemann SR, Romine MF, Haruta S, Schuster SC, Bryant DA, Fredrickson JK (2014) Genome sequence of the thermophilic cyanobacterium Thermosynechococcus sp. strain NK55a. Genome Announce 2(1):e01060–e01013. CrossRefGoogle Scholar
  25. 25.
    Hirano A, Kunito S, Inoue Y, Ikeuchi M (1997) Light and low temperature induced cell flocculation of thermophilic cyanobacterium Synechococcus vulcanus. Plant Cell Physiol 38(s37):s37Google Scholar
  26. 26.
    Kawano Y, Saotome T, Ochiai Y, Katayama M, Narikawa R, Ikeuchi M (2011) Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN. Plant Cell Physiol 52(6):957–966. CrossRefPubMedGoogle Scholar
  27. 27.
    Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23(9):545–557. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39(6):1452–1463CrossRefGoogle Scholar
  29. 29.
    Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6. CrossRefGoogle Scholar
  30. 30.
    Morgan JL, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21(5):489–496. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Enomoto G, Nomura R, Shimada T, Ni Ni W, Narikawa R, Ikeuchi M (2014) Cyanobacteriochrome SesA is a diguanylate cyclase that induces cell aggregation in Thermosynechococcus. J Biol Chem 289(36):24801–24809. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Enomoto G, Ni Ni W, Narikawa R, Ikeuchi M (2015) Three cyanobacteriochromes work together to form a light color-sensitive input system for c-di-GMP signaling of cell aggregation. Proc Natl Acad Sci U S A 112(26):8082–8087. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rockwell NC, Njuguna SL, Roberts L, Castillo E, Parson VL, Dwojak S, Lagarias JC, Spiller SC (2008) A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Biochemistry 47(27):7304–7316. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Enomoto G, Hirose Y, Narikawa R, Ikeuchi M (2012) Thiol-based photocycle of the blue and teal light-sensing cyanobacteriochrome Tlr1999. Biochemistry 51(14):3050–3058. CrossRefPubMedGoogle Scholar
  35. 35.
    Maeda K, Tamura J, Okuda Y, Narikawa R, Midorikawa T, Ikeuchi M (2018) Genetic identification of factors for extracellular cellulose accumulation in the thermophilic cyanobacterium Thermosynechococcus vulcanus: proposal of a novel tripartite secretion system. Mol Microbiol 109(1):121–134. CrossRefGoogle Scholar
  36. 36.
    Enomoto G, Okuda Y, Ikeuchi M (2018) Tlr1612 is the major repressor of cell aggregation in the light-color-dependent c-di-GMP signaling network of Thermosynechococcus vulcanus. Sci Rep 8(1):5338. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005) Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44(23):8494–8499. CrossRefPubMedGoogle Scholar
  38. 38.
    Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 98(21):8777–8796. CrossRefPubMedGoogle Scholar
  39. 39.
    Ohkubo S, Miyashita H (2017) A niche for cyanobacteria producing chlorophyll f within a microbial mat. ISME J 11(10):2368–2378. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wilde A, Mullineaux CW (2015) Motility in cyanobacteria: polysaccharide tracks and type IV pilus motors. Mol Microbiol 98(6):998–1001. CrossRefPubMedGoogle Scholar
  41. 41.
    Schuergers N, Lenn T, Kampmann R, Meissner MV, Esteves T, Temerinac-Ott M, Korvink JG, Lowe AR, Mullineaux CW, Wilde A (2016) Cyanobacteria use micro-optics to sense light direction. eLife 5:e12620. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nakane D, Nishizaka T (2017) Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria. Proc Natl Acad Sci U S A 114(25):6593–6598. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wilde A, Mullineaux CW (2017) Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol Rev 41(6):900–922. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Choi JS, Chung YH, Moon YJ, Kim C, Watanabe M, Song PS, Joe CO, Bogorad L, Park YM (1999) Photomovement of the gliding cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol 70(1):95–102. CrossRefPubMedGoogle Scholar
  45. 45.
    Chau RM, Bhaya D, Huang KC (2017) Emergent phototactic responses of cyanobacteria under complex light regimes. mBio 8(2):e02330–e02316. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sugimoto Y, Nakamura H, Ren S, Hori K, Masuda S (2017) Genetics of the blue light-dependent signal cascade that controls phototaxis in the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 58(3):458–465. CrossRefPubMedGoogle Scholar
  47. 47.
    Agostoni M, Waters CM, Montgomery BL (2016) Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria. Biotechnol Bioeng 113(2):311–319. CrossRefPubMedGoogle Scholar
  48. 48.
    Wilde A, Fiedler B, Börner T (2002) The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. Mol Microbiol 44(4):981–988. CrossRefPubMedGoogle Scholar
  49. 49.
    Anders K, von Stetten D, Mailliet J, Kiontke S, Sineshchekov VA, Hildebrandt P, Hughes J, Essen LO (2011) Spectroscopic and photochemical characterization of the red-light sensitive photosensory module of Cph2 from Synechocystis PCC 6803. Photochem Photobiol 87(1):160–173. CrossRefPubMedGoogle Scholar
  50. 50.
    Anders K, Daminelli-Widany G, Mroginski MA, von Stetten D, Essen LO (2013) Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling. J Biol Chem 288(50):35714–35725. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Savakis P, De Causmaecker S, Angerer V, Ruppert U, Anders K, Essen LO, Wilde A (2012) Light-induced alteration of c-di-GMP level controls motility of Synechocystis sp. PCC 6803. Mol Microbiol 85(2):239–251. CrossRefPubMedGoogle Scholar
  52. 52.
    Angerer V, Schwenk P, Wallner T, Kaever V, Hiltbrunner A, Wilde A (2017) The protein Slr1143 is an active diguanylate cyclase in Synechocystis sp. PCC 6803 and interacts with the photoreceptor Cph2. Microbiology 163(6):920–930. CrossRefPubMedGoogle Scholar
  53. 53.
    Schwarzkopf M, Yoo YC, Huckelhoven R, Park YM, Proels RK (2014) Cyanobacterial phytochrome2 regulates the heterotrophic metabolism and has a function in the heat and high-light stress response. Plant Physiol 164(4):2157–2166. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Schuergers N, Wilde A (2015) Appendages of the cyanobacterial cell. Life 5(1):700–715. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Schuergers N, Nürnberg DJ, Wallner T, Mullineaux CW, Wilde A (2015) PilB localization correlates with the direction of twitching motility in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 161(Pt 5):960–966. CrossRefPubMedGoogle Scholar
  56. 56.
    Wang YC, Chin KH, Tu ZL, He J, Jones CJ, Sanchez DZ, Yildiz FH, Galperin MY, Chou SH (2016) Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat Commun 7:12481. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jones CJ, Utada A, Davis KR, Thongsomboon W, Zamorano Sanchez D, Banakar V, Cegelski L, Wong GC, Yildiz FH (2015) C-di-GMP regulates motile to sessile transition by modulating MshA pili biogenesis and near-surface motility behavior in Vibrio cholerae. PLoS Pathog 11(10):e1005068. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hendrick WA, Orr MW, Murray SR, Lee VT, Melville SB (2017) Cyclic di-GMP binding by an assembly ATPase (PilB2) and control of type IV pilin polymerization in the gram-positive pathogen Clostridium perfringens. J Bacteriol 199(10):e00034–e00017. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI (2010) Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328(5983):1295–1297. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kulasekara BR, Kamischke C, Kulasekara HD, Christen M, Wiggins PA, Miller SI (2013) C-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. eLife 2:e01402. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yoshihara S, Katayama M, Geng X, Ikeuchi M (2004) Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms. Plant Cell Physiol 45(12):1729–1737. CrossRefPubMedGoogle Scholar
  62. 62.
    Okajima K, Yoshihara S, Fukushima Y, Geng X, Katayama M, Higashi S, Watanabe M, Sato S, Tabata S, Shibata Y, Itoh S, Ikeuchi M (2005) Biochemical and functional characterization of BLUF-type flavin-binding proteins of two species of cyanobacteria. J Biochem 137(6):741–750. CrossRefPubMedGoogle Scholar
  63. 63.
    Song JY, Cho HS, Cho JI, Jeon JS, Lagarias JC, Park YI (2011) Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. Proc Natl Acad Sci U S A 108(26):10780–10785. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Narikawa R, Suzuki F, Yoshihara S, Higashi S, Watanabe M, Ikeuchi M (2011) Novel photosensory two-component system (PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 52(12):2214–2224. CrossRefPubMedGoogle Scholar
  65. 65.
    Neunuebel MR, Golden JW (2008) The Anabaena sp. strain PCC 7120 gene all2874 encodes a diguanylate cyclase and is required for normal heterocyst development under high-light growth conditions. J Bacteriol 190(20):6829–6836. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Gomelsky M, Hoff WD (2011) Light helps bacteria make important lifestyle decisions. Trends Microbiol 19(9):441–448. CrossRefPubMedGoogle Scholar
  67. 67.
    Chou S-H, Galperin MY (2016) Diversity of c-di-GMP-binding proteins and mechanisms. J Bacteriol 198(1):32–46. CrossRefGoogle Scholar
  68. 68.
    Hood RD, Higgins SA, Flamholz A, Nichols RJ, Savage DF (2016) The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A 113(33):E4867–E4876. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Puszynska AM, O'Shea EK (2017) ppGpp controls global gene expression in light and in darkness in S. elongatus. Cell Rep 21(11):3155–3165. CrossRefPubMedGoogle Scholar
  70. 70.
    Field B (2018) Green magic: regulation of the chloroplast stress response by (p)ppGpp in plants and algae. J Exp Bot 69(11):2797–2807. CrossRefPubMedGoogle Scholar
  71. 71.
    Terauchi K, Ohmori M (1999) An adenylate cyclase, Cya1, regulates cell motility in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 40(2):248–251. CrossRefPubMedGoogle Scholar
  72. 72.
    Bhaya D, Nakasugi K, Fazeli F, Burriesci MS (2006) Phototaxis and impaired motility in adenylyl cyclase and cyclase receptor protein mutants of Synechocystis sp. strain PCC 6803. J Bacteriol 188(20):7306–7310. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Yoshimura H, Yanagisawa S, Kanehisa M, Ohmori M (2002) Screening for the target gene of cyanobacterial cAMP receptor protein SYCRP1. Mol Microbiol 43(4):843–853. CrossRefPubMedGoogle Scholar
  74. 74.
    Yoshimura H, Yoshihara S, Okamoto S, Ikeuchi M, Ohmori M (2002) A cAMP receptor protein, SYCRP1, is responsible for the cell motility of Synechocystis sp. PCC 6803. Plant Cell Physiol 43(4):460–463. CrossRefPubMedGoogle Scholar
  75. 75.
    Ohmori K, Hirose M, Ohmori M (1993) An increase in the intracellular concentration of cAMP triggers formation of an algal mat by the cyanobacterium Spirulina platensis. Plant Cell Physiol 34(1):169–171. CrossRefGoogle Scholar
  76. 76.
    Terauchi K, Ohmori M (2004) Blue light stimulates cyanobacterial motility via a cAMP signal transduction system. Mol Microbiol 52(1):303–309. CrossRefPubMedGoogle Scholar
  77. 77.
    Kashith M, Keerthana B, Sriram S, Ramamurthy V (2016) Adenylate cyclase in Arthrospira platensis responds to light through transcription. Biochem Biophys Res Commun 477(2):297–301. CrossRefPubMedGoogle Scholar
  78. 78.
    Selim KA, Haase F, Hartmann MD, Hagemann M, Forchhammer K (2018) PII-like signaling protein SbtB links cAMP sensing with cyanobacterial inorganic carbon response. Proc Natl Acad Sci U S A 115(21):E4861–E4869. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Hammer A, Hodgson DR, Cann MJ (2006) Regulation of prokaryotic adenylyl cyclases by CO2. Biochem J 396(2):215–218. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ohmori M, Okamoto S (2004) Photoresponsive cAMP signal transduction in cyanobacteria. Photochem Photobiol Sci 3(6):503–511. CrossRefPubMedGoogle Scholar
  81. 81.
    Rauch A, Leipelt M, Russwurm M, Steegborn C (2008) Crystal structure of the guanylyl cyclase Cya2. Proc Natl Acad Sci U S A 105(41):15720–15725. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Cadoret JC, Rousseau B, Perewoska I, Sicora C, Cheregi O, Vass I, Houmard J (2005) Cyclic nucleotides, the photosynthetic apparatus and response to a UV-B stress in the Cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 280(40):33935–33944. CrossRefPubMedGoogle Scholar
  83. 83.
    Corrigan RM, Grundling A (2013) Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11(8):513–524. CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Römling U (2008) Great times for small molecules: c-di-AMP, a second messenger candidate in bacteria and Archaea. Sci Signal 1(33):pe39. CrossRefPubMedGoogle Scholar
  85. 85.
    Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182(5):1191–1199. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Rubin BE, Huynh TN, Welkie DG, Diamond S, Simkovsky R, Pierce EC, Taton A, Lowe LC, Lee JJ, Rifkin SA, Woodward JJ, Golden SS (2018) High-throughput interaction screens illuminate the role of c-di-AMP in cyanobacterial nighttime survival. PLoS Genet 14(4):e1007301. CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Agostoni M, Logan-Jackson AR, Heinz ER, Severin GB, Bruger EL, Waters CM, Montgomery BL (2018) Homeostasis of second messenger cyclic-di-AMP is critical for cyanobacterial fitness and acclimation to abiotic stress. Front Microbiol 9:1121. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR (2013) Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 9(12):834–839. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Tanwar M, Sharma K, Moar P, Kateriya S (2018) Biochemical characterization of the engineered soluble photoactivated guanylate cyclases from microbes expands optogenetic tools. Appl Biochem Biotechnol 185(4):1014–1028. CrossRefPubMedGoogle Scholar
  90. 90.
    Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV (2015) Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu Rev Biochem 84(1):519–550. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Ryu MH, Kang IH, Nelson MD, Jensen TM, Lyuksyutova AI, Siltberg-Liberles J, Raizen DM, Gomelsky M (2014) Engineering adenylate cyclases regulated by near-infrared window light. Proc Natl Acad Sci U S A 111(28):10167–10172. CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Gasser C, Taiber S, Yeh CM, Wittig CH, Hegemann P, Ryu S, Wunder F, Möglich A (2014) Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proc Natl Acad Sci U S A 111(24):8803–8808. CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Fushimi K, Enomoto G, Ikeuchi M, Narikawa R (2017) Distinctive properties of dark reversion kinetics between two red/green-type cyanobacteriochromes and their application in the photoregulation of cAMP synthesis. Photochem Photobiol 93(3):681–691. CrossRefPubMedGoogle Scholar
  94. 94.
    Blain-Hartung M, Rockwell NC, Lagarias JC (2017) Light-regulated synthesis of cyclic-di-GMP by a bidomain construct of the cyanobacteriochrome Tlr0924 (SesA) without stable dimerization. Biochemistry 56(46):6145–6154. CrossRefPubMedGoogle Scholar
  95. 95.
    Etzl S, Lindner R, Nelson MD, Winkler A (2018) Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications. J Biol Chem 293(23):9078–9089. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Stüven B, Stabel R, Ohlendorf R, Beck J, Schubert R, Möglich A (2019) Characterization and engineering of photoactivated adenylyl cyclases. Biol Chem 400. CrossRefGoogle Scholar
  97. 97.
    Hu PP, Guo R, Zhou M, Gartner W, Zhao KH (2018) The red−/green-switching GAF3 of cyanobacteriochrome Slr1393 from Synechocystis sp. PCC6803 regulates the activity of an adenylyl cyclase. Chembiochem 19(17):1887–1895. CrossRefPubMedGoogle Scholar
  98. 98.
    Blain-Hartung M, Rockwell NC, Moreno MV, Martin SS, Gan F, Bryant DA, Lagarias JC (2018) Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. J Biol Chem 293(22):8473–8483. CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Ryu MH, Fomicheva A, Moskvin OV, Gomelsky M (2017) Optogenetic module for dichromatic control of c-di-GMP signaling. J Bacteriol 199(18).
  100. 100.
    O’Neal L, Ryu MH, Gomelsky M, Alexandre G (2017) Optogenetic manipulation of cyclic di-GMP (c-di-GMP) levels reveals the role of c-di-gmp in regulating aerotaxis receptor activity in Azospirillum brasilense. J Bacteriol 199(18).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Life Sciences (Biology)Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
  2. 2.Institute for Biology III, Faculty of BiologyUniversity of FreiburgFreiburgGermany

Personalised recommendations