Advertisement

Cyclic di-GMP Signaling in Bacillus subtilis

  • Cordelia A. Weiss
  • Wade C. WinklerEmail author
Chapter
  • 103 Downloads

Abstract

The ubiquitous second messenger bis-(3′-5′)-cyclic diguanosine monophosphate (cyclic di-GMP) plays a key role in regulating the transition from motility to sessility in bacteria. While cyclic di-GMP regulation is well studied in a number of Gram-negative bacteria, the physiological role of cyclic di-GMP in Gram-positive organisms is less characterized. Bacillus subtilis is an important model Gram-positive organism that differentiates into distinct subpopulations, such as motile, competent, biofilm-forming, and sporulating cells. Several recent investigations have begun to address how cyclic di-GMP regulates some of these cellular outcomes. The B. subtilis genome encodes three diguanylate cyclases (DGCs) and one phosphodiesterase (PDE), whose respective activities were shown to affect motility. Additionally, three cyclic di-GMP receptors, MotI, YdaK, and YkuI have been discovered. MotI is a PilZ domain protein that inhibits motility by interacting with the MotA stator element of the flagellar apparatus, revealing a direct relationship between cyclic di-GMP signaling and flagellar motility. YdaK was shown to regulate production of a novel exopolysaccharide, suggesting cyclic di-GMP may also impact biofilm formation. YkuI’s involvement in phenotypic regulation has not yet been ascertained, although a connection with zinc homeostasis has been suggested. This review will discuss the discoveries that have led to our current understanding of cyclic di-GMP signaling and regulation in B. subtilis. Outstanding questions and comparison of cyclic di-GMP regulation in other Gram-positive organisms will also be addressed.

Keywords

Bacillus subtilis Cyclic di-GMP Flagellar motility Biofilm formation Exopolysaccharide 

References

  1. 1.
    Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579–586.  https://doi.org/10.1016/j.mib.2004.10.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117.  https://doi.org/10.1038/nrmicro750 CrossRefPubMedGoogle Scholar
  3. 3.
    Kearns DB, Losick R (2005) Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19:3083–3094.  https://doi.org/10.1101/gad.1373905 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dubnau D, Losick R (2006) Bistability in bacteria. Mol Microbiol 61:564–572.  https://doi.org/10.1111/j.1365-2958.2006.05249.x CrossRefPubMedGoogle Scholar
  5. 5.
    Chen I, Christie PJ, Dubnau D (2005) The ins and outs of DNA transfer in bacteria. Science 310:1456–1460.  https://doi.org/10.1126/science.1114021 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vlamakis H, Aguilar C, Losick R, Kolter R (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945–953.  https://doi.org/10.1101/gad.1645008 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Claessen D, Rozen DE, Kuipers OP et al (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12:115–124.  https://doi.org/10.1038/nrmicro3178 CrossRefPubMedGoogle Scholar
  8. 8.
    van Gestel J, Vlamakis H, Kolter R (2015) From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol 13:e1002141.  https://doi.org/10.1371/journal.pbio.1002141 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lopez D, Vlamakis H, Kolter R (2009) Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33:152–163.  https://doi.org/10.1111/j.1574-6976.2008.00148.x CrossRefPubMedGoogle Scholar
  10. 10.
    Dragoš A, Kiesewalter H, Martin M et al (2018) Division of labor during biofilm matrix production. Curr Biol 28:1903–1913.e5.  https://doi.org/10.1016/j.cub.2018.04.046 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107:2230–2234.  https://doi.org/10.1073/pnas.0910560107 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Branda SS, Chu F, Kearns DB et al (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238.  https://doi.org/10.1111/j.1365-2958.2005.05020.x CrossRefPubMedGoogle Scholar
  13. 13.
    Nagorska K, Ostrowski A, Hine K et al (2010) Importance of eps genes from Bacillus subtilis in biofilm formation and swarming. J Appl Genet 51:369–381.  https://doi.org/10.1007/bf03208867 CrossRefPubMedGoogle Scholar
  14. 14.
    Kobayashi K, Iwano M (2012) BslA (YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol 85:51–66.  https://doi.org/10.1111/j.1365-2958.2012.08094.x CrossRefPubMedGoogle Scholar
  15. 15.
    Hobley L, Ostrowski A, Rao FV et al (2013) BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci U S A 110:13600–13605.  https://doi.org/10.1073/pnas.1306390110 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lopez D, Vlamakis H, Losick R, Kolter R (2009) Paracrine signaling in a bacterium. Genes Dev 23:1631–1638.  https://doi.org/10.1101/gad.1813709 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ghelardi E, Salvetti S, Ceragioli M et al (2012) Contribution of surfactin and SwrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Appl Environ Microbiol 78:6540–6544.  https://doi.org/10.1128/AEM.01341-12 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nakano MM, Magnuson R, Myers A et al (1991) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173:1770–1778CrossRefGoogle Scholar
  19. 19.
    Davidson FA, Seon-Yi C, Stanley-Wall NR (2012) Selective heterogeneity in exoprotease production by Bacillus subtilis. PLoS One 7:e38574.  https://doi.org/10.1371/journal.pone.0038574 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Marlow VL, Cianfanelli FR, Porter M et al (2014) The prevalence and origin of exoprotease-producing cells in the Bacillus subtilis biofilm. Microbiology 160:56–66.  https://doi.org/10.1099/mic.0.072389-0 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108.  https://doi.org/10.1038/nrmicro821 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chai Y, Chu F, Kolter R, Losick R (2008) Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol 67:254–263.  https://doi.org/10.1111/j.1365-2958.2007.06040.x CrossRefPubMedGoogle Scholar
  23. 23.
    Branda SS, González-Pastor JE, Ben-Yehuda S et al (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98:11621–11626CrossRefGoogle Scholar
  24. 24.
    Blair KM, Turner L, Winkelman JT et al (2008) A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320:1636–1638.  https://doi.org/10.1126/science.1157877 CrossRefPubMedGoogle Scholar
  25. 25.
    Vlamakis H, Chai Y, Beauregard P et al (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168.  https://doi.org/10.1038/nrmicro2960 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Flemming H-C, Wingender J, Szewzyk U et al (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575.  https://doi.org/10.1038/nrmicro.2016.94 CrossRefPubMedGoogle Scholar
  27. 27.
    Veening J-W, Smits WK, Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62:193–210.  https://doi.org/10.1146/annurev.micro.62.081307.163002 CrossRefPubMedGoogle Scholar
  28. 28.
    Simm R, Morr M, Kader A et al (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility: cyclic di-GMP turnover by GGDEF and EAL domains. Mol Microbiol 53:1123–1134.  https://doi.org/10.1111/j.1365-2958.2004.04206.x CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273.  https://doi.org/10.1038/nrmicro2109 CrossRefGoogle Scholar
  30. 30.
    Purcell EB, Tamayo R (2016) Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol Rev 40:753–773.  https://doi.org/10.1093/femsre/fuw013 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187:1792–1798.  https://doi.org/10.1128/JB.187.5.1792-1798.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ausmees N, Mayer R, Weinhouse H et al (2001) Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol Lett 204:163–167.  https://doi.org/10.1111/j.1574-6968.2001.tb10880.x CrossRefPubMedGoogle Scholar
  33. 33.
    Ross P, Weinhouse H, Aloni Y et al (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281.  https://doi.org/10.1038/325279a0 CrossRefGoogle Scholar
  34. 34.
    Paul R, Weiser S, Amiot NC et al (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18:715–727.  https://doi.org/10.1101/gad.289504 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102:14422–14427.  https://doi.org/10.1073/pnas.0507170102 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chou S-H, Galperin MY (2015) Diversity of cyclic di-GMP-binding proteins and mechanisms. J Bacteriol 198:32–46.  https://doi.org/10.1128/JB.00333-15 CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Tal R, Wong HC, Calhoon R et al (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180:4416–4425CrossRefGoogle Scholar
  38. 38.
    Tischler AD, Camilli A (2004) Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53:857–869.  https://doi.org/10.1111/j.1365-2958.2004.04155.x CrossRefGoogle Scholar
  39. 39.
    Tamayo R, Tischler AD, Camilli A (2005) The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J Biol Chem 280:33324–33330.  https://doi.org/10.1074/jbc.M506500200 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Galperin MY, Natale DA, Aravind L, Koonin EV (1999) A specialized version of the HD hydrolase domain implicated in signal transduction. J Mol Microbiol Biotechnol 1:303–305PubMedPubMedCentralGoogle Scholar
  41. 41.
    Miner KD, Kurtz DM (2016) Active site metal occupancy and cyclic di-GMP phosphodiesterase activity of Thermotoga maritima HD-GYP. Biochemistry 55:970–979.  https://doi.org/10.1021/acs.biochem.5b01227 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cohen D, Mechold U, Nevenzal H et al (2015) Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 112:11359–11364.  https://doi.org/10.1073/pnas.1421450112 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Orr MW, Donaldson GP, Severin GB et al (2015) Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A 112:E5048–E5057.  https://doi.org/10.1073/pnas.1507245112 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Orr MW, Weiss CA, Severin GB et al (2018) A subset of exoribonucleases serve as degradative enzymes for pGpG in c-di-GMP signaling. J Bacteriol 200.  https://doi.org/10.1128/JB.00300-18
  45. 45.
    Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506CrossRefGoogle Scholar
  46. 46.
    Hurley JH (2003) GAF domains: cyclic nucleotides come full circle. Sci STKE 2003:PE1.  https://doi.org/10.1126/stke.2003.164.pe1 CrossRefPubMedGoogle Scholar
  47. 47.
    Lin Z, Johnson LC, Weissbach H et al (2007) Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc Natl Acad Sci U S A 104:9597–9602.  https://doi.org/10.1073/pnas.0703774104 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gomelsky M, Klug G (2002) BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem Sci 27:497–500CrossRefGoogle Scholar
  49. 49.
    Tschowri N, Busse S, Hengge R (2009) The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes Dev 23:522–534.  https://doi.org/10.1101/gad.499409 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21.  https://doi.org/10.1111/j.1574-6968.2001.tb10814.x CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Schmidt AJ, Ryjenkov DA, Gomelsky M (2005) The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187:4774–4781.  https://doi.org/10.1128/JB.187.14.4774-4781.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Christen M, Christen B, Folcher M et al (2005) Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280:30829–30837.  https://doi.org/10.1074/jbc.M504429200 CrossRefGoogle Scholar
  53. 53.
    Gao X, Mukherjee S, Matthews PM et al (2013) Functional characterization of core components of the Bacillus subtilis cyclic-di-GMP signaling pathway. J Bacteriol 195:4782–4792.  https://doi.org/10.1128/JB.00373-13 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Minasov G, Padavattan S, Shuvalova L et al (2009) Crystal structures of YkuI and its complex with second messenger cyclic di-GMP suggest catalytic mechanism of phosphodiester bond cleavage by EAL domains. J Biol Chem 284:13174–13184.  https://doi.org/10.1074/jbc.M808221200 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ryjenkov DA, Simm R, Römling U, Gomelsky M (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: The PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281:30310–30314.  https://doi.org/10.1074/jbc.C600179200 CrossRefGoogle Scholar
  56. 56.
    Christen M, Christen B, Allan MG et al (2007) DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc Natl Acad Sci U S A 104:4112–4117.  https://doi.org/10.1073/pnas.0607738104 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pratt JT, Tamayo R, Tischler AD, Camilli A (2007) PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J Biol Chem 282:12860–12870.  https://doi.org/10.1074/jbc.M611593200 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lee VT, Matewish JM, Kessler JL et al (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65:1474–1484.  https://doi.org/10.1111/j.1365-2958.2007.05879.x CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Duerig A, Abel S, Folcher M et al (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23:93–104.  https://doi.org/10.1101/gad.502409 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Petters T, Zhang X, Nesper J et al (2012) The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus. Mol Microbiol 84:147–165.  https://doi.org/10.1111/j.1365-2958.2012.08015.x CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Newell PD, Monds RD, O’Toole GA (2009) LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0–1. Proc Natl Acad Sci U S A 106:3461–3466.  https://doi.org/10.1073/pnas.0808933106 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kazmierczak BI, Lebron MB, Murray TS (2006) Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol 60:1026–1043.  https://doi.org/10.1111/j.1365-2958.2006.05156.x CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69:376–389.  https://doi.org/10.1111/j.1365-2958.2008.06281.x CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Srivastava D, Harris RC, Waters CM (2011) Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. J Bacteriol 193:6331–6341.  https://doi.org/10.1128/JB.05167-11 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Chin K-H, Lee Y-C, Tu Z-L et al (2010) The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396:646–662.  https://doi.org/10.1016/j.jmb.2009.11.076 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Leduc JL, Roberts GP (2009) Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol 191:7121–7122.  https://doi.org/10.1128/JB.00845-09 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Fazli M, O’Connell A, Nilsson M et al (2011) The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol Microbiol 82:327–341.  https://doi.org/10.1111/j.1365-2958.2011.07814.x CrossRefGoogle Scholar
  68. 68.
    Ferreira RBR, Chodur DM, Antunes LCM et al (2012) Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio parahaemolyticus Scr network. J Bacteriol 194:914–924.  https://doi.org/10.1128/JB.05807-11 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tschowri N, Schumacher MA, Schlimpert S et al (2014) Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 158:1136–1147.  https://doi.org/10.1016/j.cell.2014.07.022 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Roelofs KG, Jones CJ, Helman SR et al (2015) Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with type II secretion systems. PLoS Pathog 11(10):e1005232.  https://doi.org/10.1371/journal.ppat.1005232 CrossRefGoogle Scholar
  71. 71.
    Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6.  https://doi.org/10.1093/bioinformatics/bti739 CrossRefGoogle Scholar
  72. 72.
    Benach J, Swaminathan SS, Tamayo R et al (2007) The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26:5153–5166.  https://doi.org/10.1038/sj.emboj.7601918 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Subramanian S, Gao X, Dann CE, Kearns DB (2017) MotI (DgrA) acts as a molecular clutch on the flagellar stator protein MotA in Bacillus subtilis. Proc Natl Acad Sci U S A 114:13537–13542.  https://doi.org/10.1073/pnas.1716231114 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ko J, Ryu K-S, Kim H et al (2010) Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by Pilz domain proteins. J Mol Biol 398:97–110.  https://doi.org/10.1016/j.jmb.2010.03.007 CrossRefPubMedGoogle Scholar
  75. 75.
    Whitney JC, Whitfield GB, Marmont LS et al (2015) Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa. J Biol Chem 290:12451–12462.  https://doi.org/10.1074/jbc.M115.645051 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Chen Y, Chai Y, Guo J-H, Losick R (2012) Evidence for cyclic Di-GMP-mediated signaling in Bacillus subtilis. J Bacteriol 194:5080–5090.  https://doi.org/10.1128/JB.01092-12 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Chan C, Paul R, Samoray D et al (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A 101:17084–17089.  https://doi.org/10.1073/pnas.0406134101 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Christen B, Christen M, Paul R et al (2006) Allosteric control of cyclic di-GMP signaling. J Biol Chem 281:32015–32024.  https://doi.org/10.1074/jbc.M603589200 CrossRefGoogle Scholar
  79. 79.
    Gomelsky M (2010) The core pathway: diguanylate cyclases, cyclic di-GMP-specific phosphodiesterases, and cyclic di-GMP-binding proteins. The second messenger cyclic di-GMP 37–56. doi: https://doi.org/10.1128/9781555816667.ch4
  80. 80.
    Rao F, See RY, Zhang D et al (2010) YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J Biol Chem 285:473–482.  https://doi.org/10.1074/jbc.M109.040238 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Oppenheimer-Shaanan Y, Wexselblatt E, Katzhendler J et al (2011) c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep 12:594–601.  https://doi.org/10.1038/embor.2011.77 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Gándara C, Alonso JC (2015) DisA and c-di-AMP act at the intersection between DNA-damage response and stress homeostasis in exponentially growing Bacillus subtilis cells. DNA Repair 27:1–8.  https://doi.org/10.1016/j.dnarep.2014.12.007 CrossRefPubMedGoogle Scholar
  83. 83.
    Townsley L, Yannarell SM, Huynh TN et al (2018) Cyclic di-AMP acts as an extracellular signal that impacts Bacillus subtilis biofilm formation and plant attachment. mBio:9.  https://doi.org/10.1128/mBio.00341-18
  84. 84.
    Commichau FM, Dickmanns A, Gundlach J et al (2015) A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 97:189–204.  https://doi.org/10.1111/mmi.13026 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Newell PD, Boyd CD, Sondermann H, O’Toole GA (2011) A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol 9.  https://doi.org/10.1371/journal.pbio.1000587 CrossRefGoogle Scholar
  86. 86.
    Navarro MVAS, De N, Bae N et al (2009) Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure 17:1104–1116.  https://doi.org/10.1016/j.str.2009.06.010 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Qi Y, Chuah MLC, Dong X et al (2011) Binding of cyclic diguanylate in the non-catalytic EAL domain of FimX induces a long-range conformational change. J Biol Chem 286:2910–2917.  https://doi.org/10.1074/jbc.M110.196220 CrossRefGoogle Scholar
  88. 88.
    Chandrangsu P, Helmann JD (2016) Intracellular Zn(II) intoxication leads to dysregulation of the PerR regulon resulting in heme toxicity in Bacillus subtilis. PLoS Genet 12:e1006515.  https://doi.org/10.1371/journal.pgen.1006515 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Fagerlund A, Smith V, Røhr ÅK et al (2016) Cyclic diguanylate regulation of Bacillus cereus group biofilm formation. Mol Microbiol 101:471–494.  https://doi.org/10.1111/mmi.13405 CrossRefGoogle Scholar
  90. 90.
    Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517.  https://doi.org/10.1146/annurev.micro.59.030804.121336 CrossRefPubMedGoogle Scholar
  91. 91.
    Ramesh A (2015) Second messenger – sensing riboswitches in bacteria. Semin Cell Dev Biol 47–48:3–8.  https://doi.org/10.1016/j.semcdb.2015.10.019 CrossRefGoogle Scholar
  92. 92.
    Lee ER, Baker JL, Weinberg Z et al (2010) An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329:845–848.  https://doi.org/10.1126/science.1190713 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Sudarsan N, Lee ER, Weinberg Z et al (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413.  https://doi.org/10.1126/science.1159519 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Lee ER, Sudarsan N, Breaker RR (2010) Riboswitches that sense cyclic di-GMP. The second messenger cyclic di-GMP 215–229. doi: https://doi.org/10.1128/9781555816667.ch15
  95. 95.
    Bordeleau E, Burrus V (2015) Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile. Curr Genet 61:497–502.  https://doi.org/10.1007/s00294-015-0484-z CrossRefPubMedGoogle Scholar
  96. 96.
    Krasteva PV, Fong JCN, Shikuma NJ et al (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327:866–868.  https://doi.org/10.1126/science.1181185 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Tao F, He Y-W, Wu D-H et al (2010) The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol 192:1020–1029.  https://doi.org/10.1128/JB.01253-09 CrossRefGoogle Scholar
  98. 98.
    Li W, He Z-G (2012) LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis. Nucleic Acids Res 40:11292–11307.  https://doi.org/10.1093/nar/gks923 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Roelofs KG, Wang J, Sintim HO, Lee VT (2011) Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc Natl Acad Sci U S A 108:15528–15533.  https://doi.org/10.1073/pnas.1018949108 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Düvel J, Bertinetti D, Möller S et al (2012) A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. J Microbiol Methods 88:229–236.  https://doi.org/10.1016/j.mimet.2011.11.015 CrossRefPubMedGoogle Scholar
  101. 101.
    Nesper J, Reinders A, Glatter T et al (2012) A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J Proteome 75:4874–4878.  https://doi.org/10.1016/j.jprot.2012.05.033 CrossRefGoogle Scholar
  102. 102.
    Düvel J, Bense S, Möller S et al (2016) Application of synthetic peptide arrays to uncover cyclic di-GMP binding motifs. J Bacteriol 198:138–146.  https://doi.org/10.1128/JB.00377-15 CrossRefPubMedGoogle Scholar
  103. 103.
    Srivastava D, Waters CM (2015) A filter binding assay to quantify the association of cyclic di-GMP to proteins. Bio Protoc 5:e1394CrossRefGoogle Scholar
  104. 104.
    Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644.  https://doi.org/10.1038/nrmicro2405 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590.  https://doi.org/10.1046/j.1365-2958.2003.03584.x CrossRefPubMedGoogle Scholar
  106. 106.
    Fang X, Gomelsky M (2010) A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 76:1295–1305.  https://doi.org/10.1111/j.1365-2958.2010.07179.x CrossRefPubMedGoogle Scholar
  107. 107.
    Wolfe AJ, Visick KL (2008) Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol 190:463–475.  https://doi.org/10.1128/JB.01418-07 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Boehm A, Kaiser M, Li H et al (2010) Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141:107–116.  https://doi.org/10.1016/j.cell.2010.01.018 CrossRefGoogle Scholar
  109. 109.
    Paul K, Nieto V, Carlquist WC et al (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell 38:128–139.  https://doi.org/10.1016/j.molcel.2010.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Karimova G, Pidoux J, Ullmann A, Ladant D (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756CrossRefGoogle Scholar
  111. 111.
    Roux D, Cywes-Bentley C, Zhang Y-F et al (2015) Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. J Biol Chem 290:19261–19272.  https://doi.org/10.1074/jbc.M115.648709 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Liang Z-X (2015) The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat Prod Rep 32:663–683.  https://doi.org/10.1039/C4NP00086B CrossRefGoogle Scholar
  113. 113.
    Steiner S, Lori C, Boehm A, Jenal U (2013) Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein–protein interaction. EMBO J 32:354–368.  https://doi.org/10.1038/emboj.2012.315 CrossRefGoogle Scholar
  114. 114.
    García B, Latasa C, Solano C et al (2004) Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol 54:264–277.  https://doi.org/10.1111/j.1365-2958.2004.04269.x CrossRefGoogle Scholar
  115. 115.
    Merighi M, Lee VT, Hyodo M et al (2007) The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65:876–895.  https://doi.org/10.1111/j.1365-2958.2007.05817.x CrossRefGoogle Scholar
  116. 116.
    Baraquet C, Murakami K, Parsek MR, Harwood CS (2012) The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res 40:7207–7218.  https://doi.org/10.1093/nar/gks384 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Chen L-H, Köseoğlu VK, Güvener ZT et al (2014) Cyclic di-GMP-dependent signaling pathways in the pathogenic Firmicute Listeria monocytogenes. PLoS Pathog 10.  https://doi.org/10.1371/journal.ppat.1004301 CrossRefGoogle Scholar
  118. 118.
    Köseoğlu VK, Heiss C, Azadi P et al (2015) Listeria monocytogenes exopolysaccharide: origin, structure, biosynthetic machinery and c-di-GMP-dependent regulation. Mol Microbiol 96:728–743.  https://doi.org/10.1111/mmi.12966 CrossRefPubMedGoogle Scholar
  119. 119.
    Bedrunka P, Graumann PL (2017) Subcellular clustering of a putative c-di-GMP-dependent exopolysaccharide machinery affecting macro colony architecture in Bacillus subtilis. Environ Microbiol Rep 9:211–222.  https://doi.org/10.1111/1758-2229.12496 CrossRefPubMedGoogle Scholar
  120. 120.
    Bedrunka P, Graumann PL (2017) New functions and subcellular localization patterns of c-di-GMP components (GGDEF domain proteins) in B. subtilis. Front Microbiol 8:794.  https://doi.org/10.3389/fmicb.2017.00794 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Jones CJ, Wozniak DJ (2017) Congo red stain identifies matrix overproduction and is an indirect measurement for c-di-GMP in many species of bacteria. Methods Mol Biol 1657:147–156.  https://doi.org/10.1007/978-1-4939-7240-1_12 CrossRefPubMedGoogle Scholar
  122. 122.
    Cimdins A, Simm R, Li F et al (2017) Alterations of c-di-GMP turnover proteins modulate semi-constitutive rdar biofilm formation in commensal and uropathogenic Escherichia coli. MicrobiologyOpen 6:e00508.  https://doi.org/10.1002/mbo3.508 CrossRefPubMedCentralGoogle Scholar
  123. 123.
    Straight PD, Fischbach MA, Walsh CT et al (2007) A singular enzymatic megacomplex from Bacillus subtilis. Proc Natl Acad Sci U S A 104:305–310.  https://doi.org/10.1073/pnas.0609073103 CrossRefPubMedGoogle Scholar
  124. 124.
    Weiss CA, Hoberg JA, Liu K et al (2019) Single cell microscopy reveals that levels of cyclic di-GMP vary among Bacillus subtilis subpopulations. J Bacteriol 201.  https://doi.org/10.1128/JB.00247-19
  125. 125.
    Nicolas P, Mäder U, Dervyn E et al (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335:1103–1106.  https://doi.org/10.1126/science.1206848 CrossRefPubMedGoogle Scholar
  126. 126.
    Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15(5):271–284.  https://doi.org/10.1038/nrmicro.2016.190 CrossRefGoogle Scholar
  127. 127.
    Purcell EB, McKee RW, McBride SM et al (2012) Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 194:3307–3316.  https://doi.org/10.1128/JB.00100-12 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Den Hengst CD, Tran NT, Bibb MJ et al (2010) Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth. Mol Microbiol 78:361–379.  https://doi.org/10.1111/j.1365-2958.2010.07338.x CrossRefGoogle Scholar
  129. 129.
    Tran NT, Hengst CDD, Gomez-Escribano JP, Buttner MJ (2011) Identification and characterization of CdgB, a diguanylate cyclase involved in developmental processes in Streptomyces coelicolor. J Bacteriol 193:3100–3108.  https://doi.org/10.1128/JB.01460-10 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Bordeleau E, Purcell EB, Lafontaine DA et al (2015) Cyclic Di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol 197:819–832.  https://doi.org/10.1128/JB.02340-14 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Bordeleau E, Fortier L-C, Malouin F, Burrus V (2011) c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genetics 7:e1002039.  https://doi.org/10.1371/journal.pgen.1002039 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Purcell EB, McKee RW, Courson DS et al (2017) A nutrient-regulated cyclic diguanylate phosphodiesterase controls Clostridium difficile biofilm and toxin production during stationary phase. Infect Immun 85(9):e00347-17.  https://doi.org/10.1128/IAI.00347-17 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Tang Q, Yin K, Qian H et al (2016) Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein. Sci Rep 6:28807.  https://doi.org/10.1038/srep28807 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Fu Y, Yu Z, Liu S et al (2018) c-di-GMP regulates various phenotypes and insecticidal activity of gram-positive Bacillus thuringiensis. Front Microbiol 9.  https://doi.org/10.3389/fmicb.2018.00045
  135. 135.
    Yang Y, Li Y, Gao T et al (2018) C-di-GMP turnover influences motility and biofilm formation in Bacillus amyloliquefaciens PG12. Res Microbiol 169:205–213.  https://doi.org/10.1016/j.resmic.2018.04.009 CrossRefGoogle Scholar
  136. 136.
    Schumacher MA, Zeng W, Findlay KC et al (2017) The Streptomyces master regulator BldD binds c-di-GMP sequentially to create a functional BldD2-(c-di-GMP)4 complex. Nucleic Acids Res 45:6923–6933.  https://doi.org/10.1093/nar/gkx287 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33:1523–1538.  https://doi.org/10.1007/s10529-011-0617-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUSA

Personalised recommendations