Advertisement

Osmoregulation via Cyclic di-AMP Signaling

  • Mark S. TurnerEmail author
  • Thu Ngoc Minh Vu
  • Esteban Marcellin
  • Zhao-Xun Liang
  • Huong Thi Pham
Chapter
  • 95 Downloads

Abstract

Nucleotide second messengers allow cells to transduce external signals into cellular responses by modulating the activity of a variety of protein and riboswitch receptors. Cyclic di-AMP has been found to impact on a wide array of cellular processes including resistance to acid, heat, antibiotics, osmolarity changes and connected to central metabolism, peptidoglycan homeostasis, virulence, biofilm formation, immunomodulation, sporulation, DNA repair, and growth. Unusual for a second messenger however, it is essential for growth under normal culture conditions but toxic when present in high levels for several bacteria. Interestingly high osmolarity conditions can stabilize cells devoid of cyclic di-AMP but inhibit the growth of cells with high cyclic di-AMP. Screens have identified a number of cyclic di-AMP binding receptors, and genetic suppressor analyses have uncovered mutations that restore normal growth in high or low cyclic di-AMP mutant strains. The most cyclic di-AMP-binding receptors characterized thus far in various bacteria are involved in potassium or compatible solute uptake. Taken together, results from several bacteria suggest that osmoregulation is a key conserved function of this nucleotide messenger, which will be the focus of this chapter.

Keywords

Cyclic di-AMP Stress signaling Receptor Riboswitch Osmolyte Osmoregulation Osmotic stress Potassium Glycine betaine Carnitine Cell wall peptidoglycan 

References

  1. 1.
    Witte G, Hartung S, Buttner K, Hopfner KP (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30(2):167–178.  https://doi.org/10.1016/j.molcel.2008.02.020 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Woodward JJ, Iavarone AT, Portnoy DA (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328(5986):1703–1705.  https://doi.org/10.1126/science.1189801 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Commichau FM, Heidemann JL, Ficner R, Stulke J (2018) Making and breaking of an essential poison: the cyclases and phosphodiesterases that produce and degrade the essential second messenger cyclic di-AMP in bacteria. J Bacteriol 201(1):e00462–18.  https://doi.org/10.1128/JB.00462-18 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Corrigan RM, Grundling A (2013) Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11(8):513–524.  https://doi.org/10.1038/nrmicro3069 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Huynh TN, Woodward JJ (2016) Too much of a good thing: regulated depletion of c-di-AMP in the bacterial cytoplasm. Curr Opin Microbiol 30:22–29.  https://doi.org/10.1016/j.mib.2015.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sondermann H, Shikuma NJ, Yildiz FH (2012) You’ve come a long way: c-di-GMP signaling. Curr Opin Microbiol 15(2):140–146.  https://doi.org/10.1016/j.mib.2011.12.008 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stulke J (2015) A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 97(2):189–204.  https://doi.org/10.1111/mmi.13026 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pham TH, Liang ZX, Marcellin E, Turner MS (2016) Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria. Curr Genet 62(4):731–738.  https://doi.org/10.1007/s00294-016-0600-8 CrossRefPubMedGoogle Scholar
  9. 9.
    Smith WM, Pham TH, Lei L, Dou J, Soomro AH, Beatson SA, Dykes GA, Turner MS (2012) Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816 (gdpP) induced by high-temperature growth. Appl Environ Microbiol 78(21):7753–7759.  https://doi.org/10.1128/AEM.02316-12 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huynh TN, Choi PH, Sureka K, Ledvina HE, Campillo J, Tong L, Woodward JJ (2016) Cyclic di-AMP targets the cystathionine beta-synthase domain of the osmolyte transporter OpuC. Mol Microbiol 102(2):233–243.  https://doi.org/10.1111/mmi.13456 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Agostoni M, Logan-Jackson AR, Heinz ER, Severin GB, Bruger EL, Waters CM, Montgomery BL (2018) Homeostasis of second messenger cyclic-di-AMP is critical for cyanobacterial fitness and acclimation to abiotic stress. Front Microbiol 9:1121.  https://doi.org/10.3389/fmicb.2018.01121
  12. 12.
    Zhu Y, Pham TH, Nhiep THN, Vu NMT, Marcellin E, Chakrabortti A, Wang Y, Waanders J, Lo R, Huston WM, Bansal N, Nielsen LK, Liang Z-X, Turner MS (2016) Cyclic-di-AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in Lactococcus lactis. Mol Microbiol 99(6):1015–1027CrossRefGoogle Scholar
  13. 13.
    Pham HT, Nhiep NTH, Vu TNM, Huynh TN, Zhu Y, Huynh ALD, Chakrabortti A, Marcellin E, Lo R, Howard CB, Bansal N, Woodward JJ, Liang ZX, Turner MS (2018) Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant. PLoS Genet 14(8):e1007574.  https://doi.org/10.1371/journal.pgen.1007574 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Corrigan RM, Abbott JC, Burhenne H, Kaever V, Grundling A (2011) c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7(9):e1002217.  https://doi.org/10.1371/journal.ppat.1002217 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zeden MS, Schuster CF, Bowman L, Zhong Q, Williams HD, Grundling A (2018) Cyclic-di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions. J Biol Chem 293(9):3180–3200.  https://doi.org/10.1074/jbc.M117.818716 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Luo Y, Helmann JD (2012) Analysis of the role of Bacillus subtilis σM in beta-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol Microbiol 83(3):623–639.  https://doi.org/10.1111/j.1365-2958.2011.07953.x CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gundlach J, Herzberg C, Kaever V, Gunka K, Hoffmann T, Weiss M, Gibhardt J, Thurmer A, Hertel D, Daniel R, Bremer E, Commichau FM, Stulke J (2017) Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci Signal 10(475):eaal3011.  https://doi.org/10.1126/scisignal.aal3011 CrossRefPubMedGoogle Scholar
  18. 18.
    Witte CE, Whiteley AT, Burke TP, Sauer JD, Portnoy DA, Woodward JJ (2013) Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. mBio 4(3):e00282–00213.  https://doi.org/10.1128/mBio.00282-13 CrossRefGoogle Scholar
  19. 19.
    DeFrancesco AS, Masloboeva N, Syed AK, DeLoughery A, Bradshaw N, Li GW, Gilmore MS, Walker S, Losick R (2017) Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus. Proc Natl Acad Sci U S A 114(29):E5969–E5978.  https://doi.org/10.1073/pnas.1704544114 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Griffiths JM, O’Neill AJ (2012) Loss of function of the gdpP protein leads to joint beta-lactam/glycopeptide tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 56(1):579–581.  https://doi.org/10.1128/AAC.05148-11 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dengler V, McCallum N, Kiefer P, Christen P, Patrignani A, Vorholt JA, Berger-Bachi B, Senn MM (2013) Mutation in the c-di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus. PLoS One 8(8):e73512.  https://doi.org/10.1371/journal.pone.0073512 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR (2013) Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 9(12):834–839.  https://doi.org/10.1038/nchembio.1363 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Commichau FM, Gibhardt J, Halbedel S, Gundlach J, Stulke J (2017) A delicate connection: c-di-AMP affects cell integrity by controlling osmolyte transport. Trends Microbiol 26(3):175–185.  https://doi.org/10.1016/j.tim.2017.09.003 CrossRefPubMedGoogle Scholar
  24. 24.
    Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63(1):230–262CrossRefGoogle Scholar
  25. 25.
    Whiteley AT, Garelis NE, Peterson BN, Choi PH, Tong L, Woodward JJ, Portnoy DA (2017) c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance, and osmoregulation. Mol Microbiol 104(2):212–233.  https://doi.org/10.1111/mmi.13622 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Devaux L, Sleiman D, Mazzuoli MV, Gominet M, Lanotte P, Trieu-Cuot P, Kaminski PA, Firon A (2018) Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus. PLoS Genet 14(4):e1007342.  https://doi.org/10.1371/journal.pgen.1007342 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Choi PH, Vu TMN, Pham HT, Woodward JJ, Turner MS, Tong L (2017) Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria. Proc Natl Acad Sci U S A 114(35):E7226–E7235.  https://doi.org/10.1073/pnas.1704756114 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gundlach J, Mehne FM, Herzberg C, Kampf J, Valerius O, Kaever V, Stulke J (2015) An essential poison: synthesis and degradation of cyclic di-AMP in Bacillus subtilis. J Bacteriol 197(20):3265–3274.  https://doi.org/10.1128/JB.00564-15 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zarrella TM, Metzger DW, Bai G (2018) Stress suppressor screening leads to detecting regulation of cyclic di-AMP homeostasis by a Trk-family effector protein in Streptococcus pneumoniae. J Bacteriol 200(12):e00045–18.  https://doi.org/10.1128/JB.00045-18 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Grundling A, Lee VT (2016) Old concepts, new molecules and current approaches applied to the bacterial nucleotide signalling field. Philos Trans R Soc Lond Ser B Biol Sci 371(1707):20150503.  https://doi.org/10.1098/rstb.2015.0503 CrossRefGoogle Scholar
  31. 31.
    Zhang L, Li W, He ZG (2013) DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J Biol Chem 288(5):3085–3096.  https://doi.org/10.1074/jbc.M112.428110 CrossRefGoogle Scholar
  32. 32.
    Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Grundling A (2013) Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci U S A 110(22):9084–9089.  https://doi.org/10.1073/pnas.1300595110 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schuster CF, Bellows LE, Tosi T, Campeotto I, Corrigan RM, Freemont P, Grundling A (2016) The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus. Sci Signal 9(441):ra81.  https://doi.org/10.1126/scisignal.aaf7279 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT, Sauer JD, Tong L, Woodward JJ (2014) The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158(6):1389–1401.  https://doi.org/10.1016/j.cell.2014.07.046 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Blotz C, Treffon K, Kaever V, Schwede F, Hammer E, Stulke J (2017) Identification of the components involved in cyclic di-AMP signaling in Mycoplasma pneumoniae. Front Microbiol 8:1328.  https://doi.org/10.3389/fmicb.2017.01328 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kampf J, Gundlach J, Herzberg C, Treffon K, Stulke J (2017) Identification of c-di-AMP-binding proteins using magnetic beads. Methods Mol Biol 1657:347–359.  https://doi.org/10.1007/978-1-4939-7240-1_27 CrossRefPubMedGoogle Scholar
  37. 37.
    Roelofs KG, Wang J, Sintim HO, Lee VT (2011) Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc Natl Acad Sci U S A 108(37):15528–15533.  https://doi.org/10.1073/pnas.1018949108 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bai Y, Yang J, Zarrella TM, Zhang Y, Metzger DW, Bai G (2014) Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae. J Bacteriol 196(3):614–623.  https://doi.org/10.1128/JB.01041-13 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chin KH, Liang JM, Yang JG, Shih MS, Tu ZL, Wang YC, Sun XH, Hu NJ, Liang ZX, Dow JM, Ryan RP, Chou SH (2015) Structural insights into the distinct binding mode of cyclic di-AMP with Sa CpaA_RCK. Biochemistry 54(31):4936–4951.  https://doi.org/10.1021/acs.biochem.5b00633 CrossRefPubMedGoogle Scholar
  40. 40.
    Moscoso JA, Schramke H, Zhang Y, Tosi T, Dehbi A, Jung K, Grundling A (2016) Binding of cyclic di-AMP to the Staphylococcus aureus sensor kinase KdpD occurs via the universal stress protein domain and downregulates the expression of the Kdp potassium transporter. J Bacteriol 198(1):98–110.  https://doi.org/10.1128/JB.00480-15 CrossRefPubMedGoogle Scholar
  41. 41.
    Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 65:215–238.  https://doi.org/10.1146/annurev-micro-090110-102815 CrossRefPubMedGoogle Scholar
  42. 42.
    Kim H, Youn SJ, Kim SO, Ko J, Lee JO, Choi BS (2015) Structural studies of potassium transport protein KtrA regulator of conductance of K+ (RCK) C domain in complex with cyclic diadenosine monophosphate (c-di-AMP). J Biol Chem 290(26):16393–16402.  https://doi.org/10.1074/jbc.M115.641340 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gundlach J, Dickmanns A, Schroder-Tittmann K, Neumann P, Kaesler J, Kampf J, Herzberg C, Hammer E, Schwede F, Kaever V, Tittmann K, Stulke J, Ficner R (2015) Identification, characterization, and structure analysis of the cyclic di-AMP-binding PII-like signal transduction protein DarA. J Biol Chem 290(5):3069–3080.  https://doi.org/10.1074/jbc.M114.619619 CrossRefPubMedGoogle Scholar
  44. 44.
    Choi PH, Sureka K, Woodward JJ, Tong L (2015) Molecular basis for the recognition of cyclic-di-AMP by PstA, a PII-like signal transduction protein. MicrobiologyOpen 4(3):361–374.  https://doi.org/10.1002/mbo3.243 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Muller M, Hopfner KP, Witte G (2015) c-di-AMP recognition by Staphylococcus aureus PstA. FEBS Lett 589(1):45–51.  https://doi.org/10.1016/j.febslet.2014.11.022 CrossRefPubMedGoogle Scholar
  46. 46.
    Gao A, Serganov A (2014) Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat Chem Biol 10(9):787–792.  https://doi.org/10.1038/nchembio.1607 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ren A, Patel DJ (2014) c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat Chem Biol 10(9):780–786.  https://doi.org/10.1038/nchembio.1606 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mark S. Turner
    • 1
    • 2
    Email author
  • Thu Ngoc Minh Vu
    • 1
  • Esteban Marcellin
    • 3
  • Zhao-Xun Liang
    • 4
  • Huong Thi Pham
    • 1
    • 5
  1. 1.School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
  2. 2.Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
  3. 3.Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandBrisbaneAustralia
  4. 4.School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
  5. 5.The University of DanangUniversity of Science and TechnologyDa NangVietnam

Personalised recommendations