Cyclic Dinucleotide Signaling in Mycobacteria

  • Anushya Petchiappan
  • Avisek Mahapa
  • Dipankar ChatterjiEmail author


The success of a pathogen depends on its ability for long-term survival under hostile environmental conditions. In this regard, second nucleotide messengers like cyclic di-GMP and cyclic di-AMP play a major role. In mycobacteria, cyclic di-GMP has been shown to be involved in several fundamental phenotypes like cell division, biofilm formation, and antibiotic resistance. Compared to cyclic di-GMP, there is little information available regarding the physiological role of cyclic di-AMP in mycobacteria. However, both these second messengers are associated with the activation of immune response in the host. Most antibiotics target the key pathways of the central dogma, but bacteria evolve to become resistant to them. Therefore, auxiliary pathways, like the stress response pathways, can be putative targets for the development of novel therapeutics. Mycobacterium smegmatis encodes a single gene for cyclic di-GMP metabolism and a single gene each for cyclic di-AMP synthesis and hydrolysis. This makes it an ideal system to gain a deeper insight into the phenotypes affected by cyclic dinucleotides in mycobacteria. In this chapter, we have summarized the recent advances in the field of cyclic dinucleotide signaling in mycobacteria with a focus on their metabolism, regulation of activity, and the diversity of phenotypes governed by them. In the future, the research needs to address the important questions regarding the crosstalk between the second messengers as well as identification of new second messengers in mycobacteria.


Mycobacteria Cyclic dinucleotides Stress response Crosstalk 



We would like to thank the Indian Institute of Science, Bangalore, for funding. DC is grateful to DST J.C. Bose fellowship for funding. AP acknowledges DST for fellowship. AM acknowledges DBT for fellowship. We are also thankful to Sujay Naik for the help with manuscript editing.


  1. 1.
    Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO (2013) Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 42:305–341PubMedCrossRefGoogle Scholar
  2. 2.
    Kolb A, Busby S, Buc H, Garges S, Adhya S (1993) Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795PubMedCrossRefGoogle Scholar
  3. 3.
    Marden JN, Dong Q, Roychowdhury S, Berleman JE, Bauer CE (2011) Cyclic GMP controls Rhodospirillum centenum cyst development. Mol Microbiol 79:600–615PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51PubMedCrossRefGoogle Scholar
  5. 5.
    Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281Google Scholar
  6. 6.
    Witte G, Hartung S, Buttner K, Hopfner KP (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30:167–178PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Davies BW, Bogard RW, Young TS, Mekalanos JJ (2012) Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358–370PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Fang FC, Frawley ER, Tapscott T, Vazquez-Torres A (2016) Discrimination and integration of stress signals by pathogenic bacteria. Cell Host Microbe 20:144–153PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–577PubMedCrossRefGoogle Scholar
  10. 10.
    Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529:336–343PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell Host Microbe 13:632–642PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kieser KJ, Rubin EJ (2014) How sisters grow apart: mycobacterial growth and division. Nat Rev Microbiol 12:550–562PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    WHO (2018) Global tuberculosis reportGoogle Scholar
  15. 15.
    Stallings CL, Glickman MS (2010) Is Mycobacterium tuberculosis stressed out? A critical assessment of the genetic evidence. Microbes Infect 12:1091–1101PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gupta KR, Kasetty S, Chatterji D (2015) Novel functions of (p)ppGpp and cyclic di-GMP in mycobacterial physiology revealed by phenotype microarray analysis of wild-type and isogenic strains of Mycobacterium smegmatis. Appl Environ Microbiol 81:2571–2578PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gupta K, Kumar P, Chatterji D (2010) Identification, activity and disulfide connectivity of C-di-GMP regulating proteins in Mycobacterium tuberculosis. PLoS One 5:e15072PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bharati BK, Sharma IM, Kasetty S, Kumar M, Mukherjee R, Chatterji D (2012) A full-length bifunctional protein involved in c-di-GMP turnover is required for long-term survival under nutrient starvation in Mycobacterium smegmatis. Microbiology 158:1415–1427PubMedCrossRefGoogle Scholar
  19. 19.
    Bai Y, Yang J, Zhou X, Ding X, Eisele LE, Bai G (2012) Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. PLoS One 7:e35206PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271–284CrossRefGoogle Scholar
  21. 21.
    Johnson RM, McDonough KA (2018) Cyclic nucleotide signaling in Mycobacterium tuberculosis: an expanding repertoire. Pathog Dis 76:fty048PubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273CrossRefGoogle Scholar
  23. 23.
    Chen HJ, Li N, Luo Y, Jiang YL, Zhou CZ, Chen Y, Li Q (2018) The GDP-switched GAF domain of DcpA modulates the concerted synthesis/hydrolysis of c-di-GMP in Mycobacterium smegmatis. Biochem J 475:1295–1308PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Commichau FM, Heidemann JL, Ficner R, Stulke J (2018) Making and breaking of an essential poison: the cyclases and phosphodiesterases that produce and degrade the essential second messenger cyclic di-AMP in bacteria. J Bacteriol 201:e00462-18PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rotcheewaphan S, Belisle JT, Webb KJ, Kim HJ, Spencer JS, Borlee BR (2016) Diguanylate cyclase activity of the Mycobacterium leprae T cell antigen ML1419c. Microbiology 162:1651–1661PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Flores-Valdez MA, Aceves-Sanchez Mde J, Pedroza-Roldan C, Vega-Dominguez PJ, Prado-Montes de Oca E, Bravo-Madrigal J, Laval F, Daffe M, Koestler B, Waters CM (2015) The cyclic di-GMP phosphodiesterase gene Rv1357c/BCG1419c affects BCG pellicle production and in vivo maintenance. IUBMB Life 67:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zhang L, He ZG (2013) Radiation-sensitive gene A (RadA) targets DisA, DNA integrity scanning protein A, to negatively affect cyclic Di-AMP synthesis activity in Mycobacterium smegmatis. J Biol Chem 288:22426–22436PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tang Q, Luo Y, Zheng C, Yin K, Ali MK, Li X, He J (2015) Functional analysis of a c-di-AMP-specific phosphodiesterase MsPDE from Mycobacterium smegmatis. Int J Biol Sci 11:813–824PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Manikandan K, Sabareesh V, Singh N, Saigal K, Mechold U, Sinha KM (2014) Two-step synthesis and hydrolysis of cyclic di-AMP in Mycobacterium tuberculosis. PLoS One 9:e86096PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Yang J, Bai Y, Zhang Y, Gabrielle VD, Jin L, Bai G (2014) Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection. Mol Microbiol 93:65–79PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H, Lee JH, Bishai WR (2015) A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med 21:401–406PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Postic G, Danchin A, Mechold U (2012) Characterization of NrnA homologs from Mycobacterium tuberculosis and Mycoplasma pneumoniae. RNA 18:155–165PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Srivastav R, Kumar D, Grover A, Singh A, Manjasetty BA, Sharma R, Taneja B (2014) Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases. Nucleic Acids Res 42:7894–7910PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    He Q, Wang F, Liu S, Zhu D, Cong H, Gao F, Li B, Wang H, Lin Z, Liao J, Gu L (2016) Structural and biochemical insight into the mechanism of Rv2837c from Mycobacterium tuberculosis as a c-di-NMP phosphodiesterase. J Biol Chem 291:3668–3681PubMedCrossRefGoogle Scholar
  35. 35.
    Krasteva PV, Sondermann H (2017) Versatile modes of cellular regulation via cyclic dinucleotides. Nat Chem Biol 13:350–359PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, Yildiz FH, Sondermann H (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327:866–868PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Newell PD, Boyd CD, Sondermann H, O'Toole GA (2011) A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol 9:e1000587PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tschowri N, Schumacher MA, Schlimpert S, Chinnam NB, Findlay KC, Brennan RG, Buttner MJ (2014) Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 158:1136–1147PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kim H, Youn SJ, Kim SO, Ko J, Lee JO, Choi BS (2015) Structural studies of potassium transport protein KtrA regulator of conductance of K+ (RCK) C domain in complex with cyclic diadenosine monophosphate (c-di-AMP). J Biol Chem 290:16393–16402PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Li W, He ZG (2012) LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis. Nucleic Acids Res 40:11292–11307PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Li W, Li M, Hu L, Zhu J, Xie Z, Chen J, He ZG (2018) HpoR, a novel c-di-GMP effective transcription factor, links the second messenger’s regulatory function to the mycobacterial antioxidant defense. Nucleic Acids Res 46:3595–3611PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Li W, Hu L, Xie Z, Xu H, Li M, Cui T, He ZG (2018) Cyclic di-GMP integrates functionally divergent transcription factors into a regulation pathway for antioxidant defense. Nucleic Acids Res 46:7270–7283PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zhang HN, Xu ZW, Jiang HW, Wu FL, He X, Liu Y, Guo SJ, Li Y, Bi LJ, Deng JY, Zhang XE, Tao SC (2017) Cyclic di-GMP regulates Mycobacterium tuberculosis resistance to ethionamide. Sci Rep 7:5860PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cui T, Zhang L, Wang X, He ZG (2009) Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. BMC Genomics 10:118PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zhang L, Li W, He ZG (2013) DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J Biol Chem 288:3085–3096PubMedCrossRefGoogle Scholar
  46. 46.
    Manikandan K, Prasad D, Srivastava A, Singh N, Dabeer S, Krishnan A, Muniyappa K, Sinha KM (2018) The second messenger cyclic di-AMP negatively regulates the expression of Mycobacterium smegmatis recA and attenuates DNA strand exchange through binding to the C-terminal motif of mycobacterial RecA proteins. Mol Microbiol 109:600–614Google Scholar
  47. 47.
    Gupta KR, Baloni P, Indi SS, Chatterji D (2016) Regulation of growth, cell shape, cell division, and gene expression by second messengers (p)ppGpp and cyclic di-GMP in Mycobacterium smegmatis. J Bacteriol 198:1414–1422PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hong Y, Zhou X, Fang H, Yu D, Li C, Sun B (2013) Cyclic di-GMP mediates Mycobacterium tuberculosis dormancy and pathogenecity. Tuberculosis (Edinb) 93:625–634CrossRefGoogle Scholar
  49. 49.
    Dey RJ, Dey B, Zheng Y, Cheung LS, Zhou J, Sayre D, Kumar P, Guo H, Lamichhane G, Sintim HO, Bishai WR (2017) Inhibition of innate immune cytosolic surveillance by an M. tuberculosis phosphodiesterase. Nat Chem Biol 13:210–217PubMedCrossRefGoogle Scholar
  50. 50.
    Pei J, Grishin NV (2001) GGDEF domain is homologous to adenylyl cyclase. Proteins 42:210–216PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Paul R, Abel S, Wassmann P, Beck A, Heerklotz H, Jenal U (2007) Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem 282:29170–29177PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Chan C, Paul R, Samoray D, Amiot NC, Giese B, Jenal U, Schirmer T (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci USA 101:17084–17089CrossRefGoogle Scholar
  53. 53.
    Sharma IM, Prakash S, Dhanaraman T, Chatterji D (2014) Characterization of a dual-active enzyme, DcpA, involved in cyclic diguanosine monophosphate turnover in Mycobacterium smegmatis. Microbiology 160:2304–2318PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Jain V, Saleem-Batcha R, China A, Chatterji D (2006) Molecular dissection of the mycobacterial stringent response protein Rel. Protein Sci 15:1449–1464PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bharati BK, Mukherjee R, Chatterji D (2018) Substrate-induced domain movement in a bifunctional protein, DcpA, regulates cyclic di-GMP turnover: functional implications of a highly conserved motif. J Biol Chem 293:14065–14079PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bharati BK, Swetha RK, Chatterji D (2013) Identification and characterization of starvation induced msdgc-1 promoter involved in the c-di-GMP turnover. Gene 528:99–108PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Fong JC, Yildiz FH (2008) Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J Bacteriol 190:6646–6659PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Corrigan RM, Bowman L, Willis AR, Kaever V, Grundling A (2015) Cross-talk between two nucleotide-signaling pathways in Staphylococcus aureus. J Biol Chem 290:5826–5839PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Syal K, Maiti K, Naresh K, Chatterji D, Jayaraman N (2015) Synthetic glycolipids and (p)ppGpp analogs: development of inhibitors for mycobacterial growth, biofilm, and stringent response. In: Chakrabarti A, Surolia A (eds) Biochemical roles of eukaryotic cell surface macromolecules. Springer, HeidelbergGoogle Scholar
  60. 60.
    Burdette DL, Vance RE (2013) STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 14:19–26PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Zhang X, Shi H, Wu J, Sun L, Chen C, Chen ZJ (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51:226–235PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Abdul-Sater AA, Tattoli I, Jin L, Grajkowski A, Levi A, Koller BH, Allen IC, Beaucage SL, Fitzgerald KA, Ting JP, Cambier JC, Girardin SE, Schindler C (2013) Cyclic-di-GMP and cyclic-di-AMP activate the NLRP3 inflammasome. EMBO Rep 14:900–906PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12:959–965PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS (2012) Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11:469–480PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sharma IM, Dhanaraman T, Mathew R, Chatterji D (2012) Synthesis and characterization of a fluorescent analogue of cyclic di-GMP. Biochemistry 51:5443–5453PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Nelson JW, Breaker RR (2017) The lost language of the RNA World. Sci Signal 10:eaam8812PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dippel AB, Anderson WA, Evans RS, Deutsch S, Hammond MC (2018) Chemiluminescent biosensors for detection of second messenger cyclic di-GMP. ACS Chem Biol 13:1872–1879PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Syal K, Flentie K, Bhardwaj N, Maiti K, Jayaraman N, Stallings CL, Chatterji D (2017) Synthetic (p)ppGpp analogue is an inhibitor of stringent response in mycobacteria. Antimicrob Agents Chemother 61:e00443-17PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO (2016) Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chem Commun (Camb) 52:9327–9342CrossRefGoogle Scholar
  71. 71.
    Opoku-Temeng C, Sintim HO (2016) Inhibition of cyclic diadenylate cyclase, DisA, by polyphenols. Sci Rep 6:25445PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Van Dis E, Sogi KM, Rae CS, Sivick KE, Surh NH, Leong ML, Kanne DB, Metchette K, Leong JJ, Bruml JR, Chen V, Heydari K, Cadieux N, Evans T, McWhirter SM, Dubensky TW Jr, Portnoy DA, Stanley SA (2018) STING-activating adjuvants elicit a Th17 immune response and protect against Mycobacterium tuberculosis infection. Cell Rep 23:1435–1447PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B, Nieminen EA, Danilchanka O, King DS, Lee ASY, Mekalanos JJ, Kranzusch PJ (2019) Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567:194–199. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anushya Petchiappan
    • 1
  • Avisek Mahapa
    • 1
  • Dipankar Chatterji
    • 1
    Email author
  1. 1.Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations