Calculation of Images of Thin Specimens

  • Earl J. Kirkland


This chapter presents approximate methods of calculating transmission electron microscope images of thin specimens. The thickness of the specimen is ignored, which may be appropriate for very thin specimens. Multiple scattering is also generally ignored. This approach is intermediate between the transfer function (in previous chapters) and the multislice and Bloch wave methods (discussed in later chapters) and has the advantage of requiring much less computer time.


  1. 32.
    H. Bethe. Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Annalen der Physik, 5:325–400, 1930.ADSzbMATHCrossRefGoogle Scholar
  2. 34.
    H. A. Bethe and R. W. Jackiw. Intermediate Quantum Mechanics. Benjamin, Reading, Mass., 2nd edition, 1968.Google Scholar
  3. 39.
    J. E. Bonevich and L. D. Marks. Contrast transfer theory for non-linear imaging. Ultramicroscopy, 26:313–320, 1988.CrossRefGoogle Scholar
  4. 42.
    M. Born and E. Wolf. Principles of Optics. Pergamon Press, Oxford, 6th edition, 1980.zbMATHGoogle Scholar
  5. 43.
    Eric G. T. Bosch and Ivan Lazić. Analysis of HR-STEM theory for thin specimens. Ultramicroscopy, 156:59–72, 2015.CrossRefGoogle Scholar
  6. 66.
    W. Coene, G. Janssen, M. Op de Beck, and D. Van Dyck. Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys. Rev. Letters, 69:3743–3746, 1992.ADSCrossRefGoogle Scholar
  7. 72.
    R. D. Cowan. The Theory of Atomic Structure and Spectra. Univ. of California Press, Berkeley, 1981.Google Scholar
  8. 77.
    J. M. Cowley and S. Iijima. Electron microscope image contrast for thin crystals. Z. Naturforsch., 27a:445–451, 1972.ADSCrossRefGoogle Scholar
  9. 83.
    A. V. Crewe, J. P. Langmore, and M. S. Isaacson. Resolution and contrast in the scanning transmission electron microscope. In B. M. Siegel and D. R. Beaman, editors, Physical Aspects of Electron Microscopy and Microbeam Analysis, pages 47–62. Wiley, New York, 1975.Google Scholar
  10. 96.
    J. Desseaux, A. Renault, and A. Bourret. Multi-beam images of germanium oriented in (011). Phil. Mag., 35:357–372, 1977.ADSCrossRefGoogle Scholar
  11. 100.
    P. A. Doyle and P. S. Turner. Relativistic Hartree-Fock x-ray and electron scattering factors. Acta Cryst., A24:390–397, 1968.CrossRefGoogle Scholar
  12. 109.
    J. W. Edington. Practical Electron Microscopy in Materials Science. Van Nostrand Reinhold, New York, 1976.Google Scholar
  13. 112.
    R. Eisberg and R. Resnick. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles. Wiley, New York, 2nd edition, 1985.Google Scholar
  14. 113.
    C. B. Eisenhandler and B. M. Siegel. Imaging of single atoms with the electron microscope by phase contrast. J. Applied Physics, 37:1613–1620, 1966.ADSCrossRefGoogle Scholar
  15. 131.
    H. A. Ferwerda and F. P. C. Visser. Applications of Glauber’s scattering theory to the scattering of electrons by heavy elements. In P. W. Hawkes, editor, Image Processing and Computer-Aided Design in Electron Optics, pages 212–219. Academic Press, London, 1973.Google Scholar
  16. 135.
    S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, and Y. Ikuhara. Dynamics of annular bright field scanning transmission electron microscopy. Ultramicroscopy, 110:903–923, 2010.CrossRefGoogle Scholar
  17. 136.
    S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, and Y. Ikuhara. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett., 95:191913, 2009.ADSCrossRefGoogle Scholar
  18. 137.
    C. Froese Fischer, T. Brage, and P. Jönsson. Computational Atomic Structure, an MCDF Approach. Institute of Physics Publishing, Bristol and London, 1997.zbMATHGoogle Scholar
  19. 141.
    J. Frank. A study on heavy/light atom discrimination in bright-field electron microscopy. Biophysical J., 12:484–511, 1972.ADSCrossRefGoogle Scholar
  20. 146.
    A. J. Freeman. Atomic scattering factors for spherical and aspherical charge distributions. Acta Cryst., 12:261–270, 1959.CrossRefGoogle Scholar
  21. 147.
    A. J. Freeman and J. H. Wood. An atomic scattering factor for iron. Acta Cryst., 12:271–273, 1959.CrossRefGoogle Scholar
  22. 151.
    C. Froese-Fischer. The Hartree-Fock Method for Atoms. Wiley, New York, 1977.Google Scholar
  23. 157.
    R. Glauber and V. Schomaker. The theory of electron diffraction. Phys. Rev., 89:667–671, 1953.ADSzbMATHCrossRefGoogle Scholar
  24. 221.
    J. L. Hutchison and W. G. Waddington. Atomic images of silicon? Ultramicroscopy, 25:93–96, 1988.CrossRefGoogle Scholar
  25. 227.
    M. S. Isaacson, J. Langmore, N. W. Parker, D. Kopf, and M. Utlaut. The study of the adsorption and diffusion of heavy atoms on light element substrates by means of the atomic resolution STEM. Ultramicroscopy, 1:359–376, 1976.CrossRefGoogle Scholar
  26. 228.
    R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, and E. Abe. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature Mat., 10:278–281, 2011.ADSCrossRefGoogle Scholar
  27. 230.
    K. Ishizuka. Contrast transfer of crystal images in TEM. Ultramicroscopy, 5:55–65, 1980.CrossRefGoogle Scholar
  28. 237.
    K. Izui, S. Furuno, and H. Otsu. Observations of crystal structure images of silicon. Jap. J. Elect. Micros., 26:129–132, 1977.Google Scholar
  29. 302.
    W. Kunath, F. Zemlin, and K. Weiss. Apodization in phase-contrast electron microscopy realized with hollow-cone illumination. Ultramicroscopy, 16:123–138, 1985.CrossRefGoogle Scholar
  30. 303.
    J. P. Langmore. Electron microscopy of atoms. In M. A. Hayat, editor, Princ. and Tech. of Electron Microscopy (Biol. App.), Vol. 9, pages 1–63. Van Nostrand, New York, 1978.Google Scholar
  31. 339.
    R. McWeeny. X-ray scattering by aggregates of bonded atoms, I. analytical approximations in single atom scattering. Acta Cryst., 4:513–519, 1951.CrossRefGoogle Scholar
  32. 340.
    R. McWeeny. X-ray scattering by aggregates of bonded atoms, II. the effects of bonds with applications to H2. Acta Cryst., 5:463–468, 1952.Google Scholar
  33. 343.
    J. C. Meyer, S. Kurasch, H. J. Park, V. Skakalova, D. Künzel, A. Groß, A. Chuvilin, G. Algara-Siller, S. Roth, T. Iwasaki, U. Starke, J. H. Smet, and U. Kaiser. Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nature Materials, 10:209–215, 2011.ADSCrossRefGoogle Scholar
  34. 358.
    G. Moliere. Theorie der streuung schneller gelandener teilchen I. einzelstreuung am abgeschirmten coulomb-field. Z. fur Naturforsch, 2A:133–145, 1947.ADSzbMATHCrossRefGoogle Scholar
  35. 363.
    N. F. Mott. The scattering of electrons by atoms. Proc. Royal Society, A127:658–665, 1930.zbMATHGoogle Scholar
  36. 364.
    N. F Mott and H. S. W. Massey. The Theory of Atomic Collisions. Clarendon Press, Oxford, 3rd edition, 1965.Google Scholar
  37. 377.
    M. A. O’Keefe. Resolution-damping functions in non-linear imaging. In G. W. Bailey, editor, Proceedings of the 37st Annual Meeting of the Electron Microscopy Society of America, pages 556–557, Baton Rouge, 1979. Claitor’s Publishing.Google Scholar
  38. 396.
    S. J. Pennycook. Z-contrast STEM materials science. Ultramicroscopy, 30:58–69, 1989.CrossRefGoogle Scholar
  39. 397.
    S. J. Pennycook. Z-contrast transmission electron microscopy: Direct atomic imaging of materials. Ann. Rev. Mater. Sci., 22:171–195, 1992.ADSCrossRefGoogle Scholar
  40. 408.
    H. Pulvermacher. Der transmissions-kreuz-koeffizient fur die elektronenmikroskopische abbildung bei partiell koharenter beleuchtung und elektischer instabilitat. Optik, 60:45–60, 1981.Google Scholar
  41. 416.
    L. Reimer and H. Gilde. Scattering theory and image formation in the electron microscope. In P. W. Hawkes, editor, Image Processing and Computer-Aided Design in Electron Optics, pages 138–167. Academic Press, London, 1973.Google Scholar
  42. 424.
    H. Rose. Nonstandard imaging methods in electron microscopy. Ultramicroscopy, 2:251–267, 1977.CrossRefGoogle Scholar
  43. 444.
    L. I. Schiff. Quantum Mechanics. McGraw-Hill, New York, third edition, 1968.Google Scholar
  44. 473.
    J. C. H. Spence, M. A. O’Keefe, and H. Kolar. High resolution image interpretation in crystalline germanium. Optik, 49:307–323, 1977.Google Scholar
  45. 480.
    Toma Susi, Jacob Madsen, Ursula Ludacka, Jens Jørgen Mortensen, Timothy J. Pennycook, Zhongbo Lee, Jani Kotakoski, Ute Kaiser, and Jannik C. Meyer. Efficient first principles simulation of electron scattering factors for transmission electron microscopy. Ultramicroscopy, 197:16–22, 2019.CrossRefGoogle Scholar
  46. 481.
    L. Szasz. The Electronic Structure of Atoms. Wiley, New York, 1992.Google Scholar
  47. 495.
    Michael M. J. Treacy. Z dependence of electron scattering by single atoms into annular dark-field detectors. Microscopy and Microanalysis, 17:847–858, 2011.CrossRefGoogle Scholar
  48. 543.
    E. Zeitler and H. Olsen. Screening effects in elastic scattering. Physical Review, 136:A1546–A1552, 1964.ADSCrossRefGoogle Scholar
  49. 544.
    E. Zeitler and H. Olsen. Complex scattering amplitudes in elastic electron scattering. Physical Review, 162:1439–1447, 1967.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Earl J. Kirkland
    • 1
  1. 1.School of Applied & Engineering PhysicsCornell UniversityIthacaUSA

Personalised recommendations