Advertisement

The Transmission Electron Microscope

  • Earl J. Kirkland
Chapter
  • 63 Downloads

Abstract

This chapter gives a short description of the physical instrumentation of the transmission electron microscope (fixed beam and scanned probe modes). It starts with the fundamental physics of electron dynamics for energies in the range 60–1000 keV. Some types of magnetic lenses and aberration correctors used to focus the electrons in the microscope are discussed. Various approximations used in modeling the microscope are introduced. Optical aberrations are defined, and general methods of aberration correction are described briefly.

References

  1. 29.
    G. Behan, E. C. Cosgriff, Angus I. Kirkland, and Peter D. Nellist. Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Phil. Trans. R. Soc. A, 367:3825–3844, 2009.ADSCrossRefGoogle Scholar
  2. 35.
    G. Binnig and H. Rohrer. Scanning tunneling microscopy - from birth to adolescence. Rev. Modern Physics, 59:615–625, 1987.ADSCrossRefGoogle Scholar
  3. 42.
    M. Born and E. Wolf. Principles of Optics. Pergamon Press, Oxford, 6th edition, 1980.zbMATHGoogle Scholar
  4. 44.
    D. K. Bowen and C. R. Hall. Microscopy of Materials. MacMillan Press, London, 1975.CrossRefGoogle Scholar
  5. 45.
    J. J. Bozzola and L. D. Russell. Electron Microscopy, Princ. and Tech. for Biologists, 2nd edit. Jones and Bartlett, Sudbury, Mass., 1999.Google Scholar
  6. 49.
    T. F. Budinger and R. M. Glaeser. Measurement of focus and spherical aberration of an electron microscope objective lens. Ultramicroscopy, 2:31–41, 1976.CrossRefGoogle Scholar
  7. 52.
    P. R. Buseck, J. M. Cowley, and L. Eyring, editors. High-Resolution Transmission Electron Microscopy. Oxford Univ. Press, New York, 1988.Google Scholar
  8. 56.
    Ewen Callaway. Molecular-imaging pioneers scoop nobel. Nature, 550:167, 2017.ADSCrossRefGoogle Scholar
  9. 73.
    J. M. Cowley. Image contrast in a transmission scanning electron microscope. Appl. Phys. Letters, 15:58–59, 1969.ADSCrossRefGoogle Scholar
  10. 85.
    A. V. Crewe, J. Wall, and L. M. Welter. A high-resolution scanning transmission electron microscope. J. Applied Physics, 39:5861–5868, 1968.ADSCrossRefGoogle Scholar
  11. 90.
    A. J. D’Alfonso, A. J. Morgan, A. W. C. Yan, P. Wang, H. Sawada, A. I. Kirkland, and L. J. Allen. Deterministic electron ptychography at atomic resolution. Phys. Rev. B, 89:064101, 2014.ADSCrossRefGoogle Scholar
  12. 92.
    M. Op de Beck. Comments on the use of the relativistic Schrodinger equation in high-energy electron diffraction. In G. W. Bailey and C. L. Rieder, editors, Proceedings of the 51th Annual Meeting of the Microscopy Society of America, pages 1212–1213. San Francisco Press, 1993.Google Scholar
  13. 109.
    J. W. Edington. Practical Electron Microscopy in Materials Science. Van Nostrand Reinhold, New York, 1976.Google Scholar
  14. 111.
    J. J. Einspahr and P. M. Voyles. Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy, 106:1041–1052, 2006.CrossRefGoogle Scholar
  15. 115.
    A. B. El-Kareh and J. C. J. El-Kareh. Electron Beams, Lenses, and Optics, Vol. 1,2. Academic Press, New York, 1970.CrossRefGoogle Scholar
  16. 117.
    A. Engel. The principle of reciprocity and its application to conventional and scanning dark field electron microscopy. Optik, 41:117–126, 1974.Google Scholar
  17. 123.
    R. Erni. Aberration-Corrected Imaging in Transmission Electron Microscopy. Imperial College Press, London, 2nd edition, 2015.CrossRefGoogle Scholar
  18. 129.
    H. A. Ferwerda, B. J. Hoenders, and C. H. Slump. The fully relativistic foundation of linear transfer theory in electron optics based on the Dirac equation. Optica Acta, 33:159–183, 1986.ADSCrossRefGoogle Scholar
  19. 130.
    H. A. Ferwerda, B. J. Hoenders, and C. H. Slump. Fully relativistic treatment of electron-optical image formation based on the Dirac equation. Optica Acta, 33:145–157, 1986.ADSCrossRefGoogle Scholar
  20. 134.
    S. D. Findlay and J. M. LeBeau. Detector non-uniformity in scanning transmission electron microscopy. Ultramicroscopy, 124:52–60, 2013.CrossRefGoogle Scholar
  21. 135.
    S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, and Y. Ikuhara. Dynamics of annular bright field scanning transmission electron microscopy. Ultramicroscopy, 110:903–923, 2010.CrossRefGoogle Scholar
  22. 136.
    S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, and Y. Ikuhara. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett., 95:191913, 2009.ADSCrossRefGoogle Scholar
  23. 143.
    J. Frank. Three Dimensional Electron Microscopy of Macromolecular Assemblies. Oxford Univ. Press, New York, 2006.CrossRefGoogle Scholar
  24. 150.
    S. P. Frigo, Z. H. Levine, and N. J. Zaluzec. Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Applied Physics Letters, 81:2112–2114, 2002.ADSCrossRefGoogle Scholar
  25. 153.
    K. Fujiwara. Relativistic dynamical theory of electron diffraction. J. Physical Society of Japan, 16:2226–2238, 1961.ADSCrossRefGoogle Scholar
  26. 154.
    B. Fultz and J. M. Howe. Transmission Electron Microscopy and Diffractometry of Materials. Springer-Verlag, Berlin, fourth edition, 2013.Google Scholar
  27. 158.
    Joseph I. Goldstein, Dale E. Newbury, Joseph R. Michael, Nicholas W. M. Ritchie, John Henry J. Scott, and David C. Joy. Scanning Electron Microscopy and X-Ray Microanalysis. Springer, New York, fourth edition, 2018.Google Scholar
  28. 164.
    M. De Graf. Intro. to Conventional Transmission Electron Microscopy. Cambridge Univ. Press, Cambridge, UK, 2003.Google Scholar
  29. 174.
    P. Grivet. Electron Optics, Parts 1 and 2. Pergamon, Oxford, 2nd English edition, 1972.CrossRefGoogle Scholar
  30. 179.
    F. Haguenau, P. W. Hawkes, J. L. Hutchison, B. Satiat-Jeunemaître, and G. T. Simon. Key events in the history of electron microscopy. Micros. and Microanal., 9:96–138, 2003.ADSCrossRefGoogle Scholar
  31. 180.
    M. Haider, A. Epstein, P. Jarron, and C. Boulin. A versatile, software configurable multichannel STEM detector for angle-resolved imaging. Ultramicroscopy, 54:41–59, 1994.CrossRefGoogle Scholar
  32. 181.
    M. Haider, P. Hartel, H. Müller, S. Uhlemann, and J. Zach. Current and future aberration correctors for the improvement of resolution in electron microscopy. Phil. Trans. R. Soc. A, 367:3665–3682, 2009.ADSCrossRefGoogle Scholar
  33. 182.
    M. Haider, S. Uhlemann, and J. Zach. Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy, 81:163–175, 2000.CrossRefGoogle Scholar
  34. 184.
    C. E. Hall. Introduction to Electron Microscopy. McGraw-Hill, New York, 2nd edition, 1966.zbMATHGoogle Scholar
  35. 187.
    T. Hanai, H. Yoshida, and M. Hibino. Characteristics and effectiveness of a foil lens for correction of spherical aberration in scanning transmission electron microscopy. J. Elect. Micros., 47:185–192, 1998.CrossRefGoogle Scholar
  36. 191.
    A. Hashimoto, M. Shimojo, K. Mitsuishi, and Masaki Takeguchi. Three-dimensional optical sectioning by scanning confocal electron microscopy with stage-scanning system. Micros. and Microanal., 16:233–238, 2010.ADSCrossRefGoogle Scholar
  37. 192.
    P. W. Hawkes, editor. The Beginnings of Electron Microscopy. Adv. in Electronics and Electron Physics, Suppl. 16. Academic Press, London, 1985.Google Scholar
  38. 193.
    P. W. Hawkes, editor. Aberration-corrected Electron Microscopy. Adv. in Imaging and Electron Physics, Vol. 153. Academic Press, Amsterdam, 2008.Google Scholar
  39. 195.
    P. W. Hawkes. The correction of electron lens aberrations. Ultramicroscopy, 156:A1–A64, 2015.CrossRefGoogle Scholar
  40. 196.
    P. W. Hawkes and E. Kasper. Principles of Electron Optics, volume 1. Academic Press, San Diego, 1989. Basic Geometrical Optics.Google Scholar
  41. 198.
    P. W. Hawkes and E. Kasper. Principles of Electron Optics, volume 3. Academic Press, San Diego, 1994. Wave Optics.CrossRefGoogle Scholar
  42. 202.
    R. D. Heidenreich. Fundamentals of Transmission Electron Microscopy. Wiley, New York, 1964.Google Scholar
  43. 204.
    K.-H. Herrmann. The present state of instrumentation in high-resolution electron microscopy. J. Phys. E: Sci. Instrum., 11:1076–1091, 1978.ADSCrossRefGoogle Scholar
  44. 205.
    K.-H. Herrmann. Instrumentational requirements for high resolution imaging. J. of Microscopy, 131:67–78, 1983.CrossRefGoogle Scholar
  45. 208.
    P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan. Electron Microscopy of Thin Crystals. Krieger, Huntington, New York, second edition, 1977.Google Scholar
  46. 211.
    S. Horiuchi. Fundamentals of High Resolution Transmission Electron Microscopy. North-Holland, Amsterdam, 1994.Google Scholar
  47. 228.
    R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, and E. Abe. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature Mat., 10:278–281, 2011.ADSCrossRefGoogle Scholar
  48. 229.
    Ryo Ishikawa, Andrew R. Lupini, Scott D. Findlay, and Stephen J. Pennycook. Quantitative annular dark field electron microscopy using electron signals. Microscopy and Microanalysis, 20:99–110, 2014.ADSCrossRefGoogle Scholar
  49. 232.
    K. Ishizuka. Coma-free alignment of a high-resolution electron microscope with three-fold astigmatism. Ultramicroscopy, 55:407–418, 1994.CrossRefGoogle Scholar
  50. 238.
    R. Jagannathan. Quantum theory of electron lenses based on the Dirac equation. Phys. Rev. A, 42:6674–6689, 1990.ADSCrossRefGoogle Scholar
  51. 239.
    R. Jagannathan, R. Simon, E. C. G. Sudarshan, and N. Mukunda. Quantum theory of magnetic electron lenses based on the Dirac equation. Physics Letters A, 134:457–464, 1989.ADSMathSciNetCrossRefGoogle Scholar
  52. 250.
    David C. Joy. Monte Carlo Modeling for Electron Microscopy and Analysis. Oxford Univ. Press, New York, 1995.Google Scholar
  53. 253.
    T. Kaneko, A. Saitow, T. Fujino, E. Okunishi, and H. Sawada. Development of a high-efficiency DF-STEM detector. J. Phys: Conference Series, 522:012050, 2014.Google Scholar
  54. 255.
    R. J. Keyse, A. J. Garratt-Reed, P. J. Goodhew, and G. W. Lorimer. Intro. to Scanning Transmission Electron Microscopy. Springer-Verlag, New York, 1998.Google Scholar
  55. 285.
    E. J. Kirkland and M. G. Thomas. A high efficiency annular dark field detector for STEM. Ultramicroscopy, 62:79–88, 1996.CrossRefGoogle Scholar
  56. 287.
    O. Klemperer and M. E. Barnett. Electron Optics. Cambridge Univ. Press, Cambridge, Great Britain, third edition, 1971.Google Scholar
  57. 289.
    M. Knoll and E. Ruska. Das elektronenmikroskop. Z. fur Physik, 78:318–339, 1932.ADSCrossRefGoogle Scholar
  58. 291.
    H. Koops. Aberration correction in electron microscopy. In J. M. Sturgess, editor, Proceedings of the Ninth International Congress on Electron Microscopy, volume 3, pages 185–196, Ontario, Canada, 1978. Imperial Press.Google Scholar
  59. 297.
    O. L. Krivanek. A method for determining the coefficient of spherical aberration from a single electron micrograph. Optik, 45:97–101, 1976.Google Scholar
  60. 298.
    O. L. Krivanek. Three fold astigmatism in high resolution transmission electron microscopy. Ultramicroscopy, 55:419–433, 1994.CrossRefGoogle Scholar
  61. 299.
    O. L. Krivanek, G. J. Corbin, N. Dellby, B. F. Elson, R. J. Keyse, M. F. Murfit, C. S. Own, Z. S. Szilagi, and J. W. Woodruff. An electron microscope for the aberration-corrected era. Ultramicroscopy, 108:179–195, 2008.CrossRefGoogle Scholar
  62. 300.
    O.L. Krivanek, N. Dellby, and A.R. Lupini. Towards sub-Å electron beams. Ultramicroscopy, 78:1–11, 1999.CrossRefGoogle Scholar
  63. 301.
    Ondrej L. Krivanek, Niklas Dellby, and Matthew F. Murfit. Aberration correction in electron microscopy. In J. Orloff, editor, Handbook of Charged Particle Optics, 2nd edit., pages 601–640. CRC Press, Taylor and Francis, Boca Raton, 2009.Google Scholar
  64. 302.
    W. Kunath, F. Zemlin, and K. Weiss. Apodization in phase-contrast electron microscopy realized with hollow-cone illumination. Ultramicroscopy, 16:123–138, 1985.CrossRefGoogle Scholar
  65. 322.
    A. R. Lupini, A. Y. Borisevich, J. C. Idrobo, H. M. Christen, M. Biegalski, and S. J. Pennycook. Characterizing the two- and three-dimensional resolution of an improved aberration-corrected STEM. Micros. and Microanal., 15:441–453, 2009.ADSCrossRefGoogle Scholar
  66. 336.
    D. McMulan. Scanning electron microscopy 1928–1965. Scanning, 17:175–185, 1995.CrossRefGoogle Scholar
  67. 337.
    G. McMullan, A. T. Clark, R. Turchetta, and A. R. Faruqi. Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy, 109:1411–1416, 2009.CrossRefGoogle Scholar
  68. 338.
    G. McMullan, A. R. Faruqi, D. Clare, and R. Henderson. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low electron microscopy. Ultramicroscopy, 147:156–163, 2014.CrossRefGoogle Scholar
  69. 341.
    G. A. Meek. Practical Electron Microscopy for Biologists. Wiley, London, second edition, 1976.Google Scholar
  70. 366.
    T. Mulvey, editor. The Growth of Electron Microscopy, volume 96 of Adv. in Imaging and Electron Physics. Academic Press, San Diego, 1996.Google Scholar
  71. 370.
    P. D. Nellist and J. M. Rodenburg. Electron ptychography. I. experimental demonstration beyond the conventional resolution limits. Acta Cryst., A54:49–6, 1998.CrossRefGoogle Scholar
  72. 375.
    C. W. Oatley, D. McMullan, and K. C. A. Smith. The development of the scanning electron microscope. In L. Marton and C. Marton, editors, Advances in Electronics and Electron Physics, Suppl. 16, pages 443–482. Academic Press, New York, 1985.Google Scholar
  73. 384.
    L. C. Oldfiled. Computer design of high frequency electron-optical systems. In P. W. Hawkes, editor, Image Processing and Computer-Aided Design in Electron Optics, pages 370–399. Academic Press, London, 1973.Google Scholar
  74. 388.
    Colin Ophus. Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond. Microscopy and Microanalysis, 25:563–582, 2019.ADSCrossRefGoogle Scholar
  75. 390.
    J. Orloff, editor. Handbook of Charged Particle Optics, 2nd edit. CRC Press, Taylor and Francis, Boca Raton, 2009.Google Scholar
  76. 391.
    M. T. Otten and W. M. J. Coene. High resolution imaging on a field emission TEM. Ultramicroscopy, 48:77–91, 1993.CrossRefGoogle Scholar
  77. 401.
    Stephen J. Pennycook and Peter D. Nellist, editors. Scanning Transmission Electron Microscopy, Imaging and Analysis. Springer, NY, 2011.Google Scholar
  78. 403.
    T. Plamann and J. M. Rodenburg. Electron ptychography. II. theory of three-dimensional propagation effects. Acta Cryst., A54:61–73, 1998.CrossRefGoogle Scholar
  79. 404.
    A. P. Pogany and P. S. Turner. Reciprocity in electron diffraction and microscopy. Acta Cryst., A24:103–109, 1968.CrossRefGoogle Scholar
  80. 413.
    L. Reimer. Scanning Electron Microscopy, volume 45 of Spring Series in Optical Sciences. Springer-Verlag, New York, 1985.Google Scholar
  81. 414.
    L. Reimer. Transmission Electron Microscopy, volume 36 of Spring Series in Optical Sciences. Springer-Verlag, New York, third edition, 1993.Google Scholar
  82. 415.
    L. Reimer. Energy-Filtering Transmission Electron Microscopy, volume 71 of Spring Series in Optical Sciences. Springer-Verlag, New York, 1995.Google Scholar
  83. 423.
    J. M. Rodenburg and R. H. T. Bates. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Phil. Trans. Roy. Soc. Lond. A, 339:521–553, 1992.ADSGoogle Scholar
  84. 424.
    H. Rose. Nonstandard imaging methods in electron microscopy. Ultramicroscopy, 2:251–267, 1977.CrossRefGoogle Scholar
  85. 425.
    H. Rose. Correction of aperture aberrations in magnetic systems with threefold symmetry. Nuclear Instruments and Methods, 187:187–199, 1981.ADSCrossRefGoogle Scholar
  86. 426.
    H. Rose. Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik, 85:19–24, 1990.MathSciNetGoogle Scholar
  87. 427.
    H. Rose. History of direct aberration correction. In Aberration-corrected Electron Microscopy, volume 153 of Adv. in Imaging and Electron Physics, pages 3–39. Academic Press, Amsterdam, 2008.Google Scholar
  88. 428.
    H. H. Rose. Historical aspects of aberrations correction. J. Elect. Micros., 58:77–85, 2009.CrossRefGoogle Scholar
  89. 429.
    Harald Rose. Geometrical Charged-Particle Optics. Springer, New York, second edition, 2012.Google Scholar
  90. 430.
    Axel Rother and Kurt Scheerschmidt. Relativistic effects in elastic scattering of electrons in TEM. Ultramicroscopy, 109:154–160, 2009.CrossRefGoogle Scholar
  91. 432.
    E. Ruska. The development of the electron microscope and of electron microscopy. Rev. Modern Physics, 59:627–638, 1987.ADSCrossRefGoogle Scholar
  92. 434.
    H. Sawada, T. Sannomiya, F. Hosokawa, T. Nakamichi, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, and K. Takayanagi. Measurement method of aberration from ronchigram by autocorrelation function. Ultramicroscopy, 108:1467–1475, 2008.CrossRefGoogle Scholar
  93. 435.
    H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, Koji Kimoto, and K. Suenaga. Correction of higher order geometrical aberration by triple 3-fold astigmatism field. J. Elect. Micros., 58:341–347, 2009.CrossRefGoogle Scholar
  94. 441.
    O. Scherzer. Sphaerische und chromatische korrektur von elektronenlinsen. Optik, 2:114–132, 1947.Google Scholar
  95. 442.
    O. Scherzer. The theoretical resolution limit of the electron microscope. J. Applied Physics, 20:20–29, 1949.ADSzbMATHCrossRefGoogle Scholar
  96. 453.
    A. Septier. The struggle to overcome spherical aberration in electron optics. In Adv. in Optical and Electron Microscopy, volume 1, pages 204–274. Academic Press, London, 1966.Google Scholar
  97. 454.
    A. Septier, editor. Applied Charged Particle Optics, volume 13A,B of Adv. in Electronics and Electron Physics. Academic Press, New York, 1980.Google Scholar
  98. 457.
    Colin J. R. Sheppard. Orthogonal aberration functions for high-aperture optical systems. J. Opt. Soc. Am. A, 21:832–838, 2004.CrossRefGoogle Scholar
  99. 460.
    D. J. Smith. Instrumentation and operation for high-resolution electron microscopy. In T. Mulvey and C. J. R. Sheppard, editors, Adv. in Optical and Electron Microscopy, volume 11, pages 1–55. Academic Press, London, 1989.Google Scholar
  100. 461.
    D. J. Smith. The realization of atomic resolution with the electron microscope. Rep. Prog. Physics, 60:1513–1580, 1997.ADSCrossRefGoogle Scholar
  101. 462.
    D. J. Smith. Development of aberration-corrected electron microscopy. Microsc. and Microanalysis, 14:2–15, 2008.ADSCrossRefGoogle Scholar
  102. 463.
    D. J. Smith. Progress and perspectives for atomic-resolution electron microscopy. Ultramicroscopy, 108:159–166, 2008.CrossRefGoogle Scholar
  103. 470.
    J. C. H. Spence. High-Resolution Electron Microscopy. Oxford University Press, New York, fourth edition, 2013.Google Scholar
  104. 482.
    Masaki Takeguchi1, Ayako Hashimoto1, Masayuki Shimojo, Kazutaka Mitsuishi, and Kazuo Furuya. Development of a stage-scanning system for high-resolution confocal STEM. J. Electron Micr., 57:123–127, 2008.Google Scholar
  105. 483.
    Nobuo Tanaka, editor. Scanning Transmission Electron Microscopy of Nanomaterials. Imperial College Press, London, 2015.Google Scholar
  106. 485.
    M. W. Tate, P. Purohit, D. Chamberlain, K. X. Nguyen, R. Hovden, C. S. Chang, P. Deb, E. Turgut, J. T. Heron, D. G. Schlom, D. C. Ralph, G. D. Fuchs, K. S Shanks, H. T. Philipp, D. A. Muller, and S. M. Gruner. High dynamic range pixel array detector for scanning transmission electron microscope. Microscopy and Microanalysis, 22:237–249, 2016.ADSCrossRefGoogle Scholar
  107. 489.
    A. Thust, J. Barthel, L. Houben, C. L. Jia, M. Lentzen, K. Tillmann, and K. Urban. Strategies for aberration control in sub-angstrom HRTEM. Microscopy and Microanalysis, 11 suppl. 2:58–59, 2005.Google Scholar
  108. 496.
    S. Uhlemann and M. Haider. Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy, 72:109–119, 1998.CrossRefGoogle Scholar
  109. 512.
    M. vonArdenne. Das elektronen-rastermikroskop. Z. fur Physik, 109:553–572, 1938.Google Scholar
  110. 534.
    D. B. Williams and C. B. Carter. Transmission Electron Microscopy, A Textbook for Materials Science. Springer, New York, second edition, 2009.Google Scholar
  111. 537.
    T. Wilson and C. Sheppard. Theory and Practice of Scanning Optical Microscopy. Academic Press, London, 1984.Google Scholar
  112. 538.
    K. Wong, E. Kirkland, P. Xu, R. Loane, and J. Silcox. Measurement of spherical aberration in STEM. Ultramicroscopy, 40:139–150, 1992.CrossRefGoogle Scholar
  113. 540.
    Huolin L. Xin and D. A. Muller. Three-dimensional imaging in aberration-corrected electron microscope. Micros. and Microanal., 16:445–455, 2010.CrossRefGoogle Scholar
  114. 542.
    N. J. Zaluzec. The scanning confocal electron microscope. Microscopy Today, Nov./Dec.:8–12, 2003.Google Scholar
  115. 545.
    E. Zeitler and M. G. R. Thomson. Scanning transmission electron microscopy. Optik, 31:258–366, 1970.Google Scholar
  116. 546.
    F. Zemlin, K. Weiss, P. Schiske, W. Kunath, and K.-H. Herrman. Coma free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy, 3:49–60, 1978.CrossRefGoogle Scholar
  117. 550.
    Jian Min Zuo and John C. H. Spence. Advanced Transmission Electron Microscopy, Imaging and Diffraction in Nanoscience. Springer, New York, 2017.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Earl J. Kirkland
    • 1
  1. 1.School of Applied & Engineering PhysicsCornell UniversityIthacaUSA

Personalised recommendations