Internet of Things for Irrigation System

  • J. M. Guzmán-Toloza
  • D. F. Villafaña-GamboaEmail author
  • L. J. Peniche-Ruiz
  • R. A. Gómez-Buenfil
  • J. K. Molina-Puc
  • M. J. Rodríguez-Morayta
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1053)


Technological advances have impacted in recent years most of the economic sectors of the world, where they have managed to increase efficiency and profitability particularly with one of the fastest growing applications in this sector: the Internet of Things (IoT). Agriculture is not the exception. However, most farmers in Mexico still use traditional methods of control and monitoring, which prove to be inefficient, causing time and cost losses in today’s globalized world.

The present design is an intelligent irrigation system, implemented under IoT principles and free hardware and software. There are soil moisture, luminosity, humidity and temperature sensors in the environment connected to a Raspberry Pi module; sensors detect values in real time while the Raspberry sends the data to be stored in the cloud. The control system is based on fuzzy logic rules that allow turning on and off a water pump. This design includes a mobile app where the system status is monitored. Tests show an appropriate behavior of the irrigation system.


App mobile application Internet of Things Raspberry Pi Irrigation system Sensors 


  1. 1.
    Comisión Nacional del Agua: Estadísticas del Agua en México, pp. 45–50 (2018)Google Scholar
  2. 2.
    Fereres, E., García-Vila, M.: Irrigation management for efficient crop production. In: Savin, R., Slafer, G. (eds.) Crop Science. ESSTS, pp. 345–360. Springer, New York (2019).
  3. 3.
    IICA: Innovation and Water Management for Sustainable Development in Agriculture, pp. 20–29 (2015).
  4. 4.
    Organización de las Naciones Unidas para la Alimentación y la Agricultura: El estado mundial de la agricultura y la alimentación. Roma (2018)Google Scholar
  5. 5.
    Pastor, E.J.: Introducción al Internet de las Cosas, pp. 80–120 (2015)Google Scholar
  6. 6.
    Clúster ICT-Audiovisual de Madrid: Internet de las cosas: Objetos interconectados y dispositivos inteligentes, pp. 68–75 (2016).
  7. 7.
    Negrete, J.: Internet of things in Mexican agriculture; a technology to increase agricultural productivity and reduce rural poverty, pp. 46–47 (2018)Google Scholar
  8. 8.
    Alper Akkas, M.: An IoT-based greenhouse monitoring system with Micaz motes, pp. 604–608 (2017).
  9. 9.
    World Water Vision Report: Visión Mundial del Agua, México (2017)Google Scholar
  10. 10.
    Karim, F., Karim, F.: Monitoring system using web of things in precision agriculture. In: The 12th International Conference on Future Networks and Communications (2017).
  11. 11.
    Shekhar, Y., Dagur, E., Mishra, S., Tom, R.J., Veeramanikandan, M., Sankaranarayanan, S.: Intelligent IoT based automated irrigation system. Int. J. Appl. Eng. Res. 12(18), 7306–7320 (2017)Google Scholar
  12. 12.
    OBSoil-01: Octopus Soil Moisture Sensor Brick, p. 5 (2016)Google Scholar
  13. 13.
    D-Robotics: DHT11 Humidity & Temperature Sensor, Mouser Electronics. Accessed 27 May 2019
  14. 14.
    Raspberry Pi Foundation: Raspberry Pi 3 Model B, Raspberry Pi Website, p. 137 (2016)Google Scholar
  15. 15.
    Perez, A., et al.: Una Metodología Para El Desarrollo De Hardware Y Software Embebidos En Sistemas Críticos De Seguridad. Sist. Cibernética e Informática 3(2), 70–75 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. M. Guzmán-Toloza
    • 1
  • D. F. Villafaña-Gamboa
    • 1
    Email author
  • L. J. Peniche-Ruiz
    • 1
  • R. A. Gómez-Buenfil
    • 1
  • J. K. Molina-Puc
    • 1
  • M. J. Rodríguez-Morayta
    • 1
  1. 1.Departamento de Sistemas y ComputaciónTecnológico Nacional de México, I. T. de MéridaMéridaMexico

Personalised recommendations