Advertisement

Intuitive Understanding of Domain-Specific Modeling Languages: Proposition and Application of an Evaluation Technique

  • Dominik BorkEmail author
  • Christine Schrüffer
  • Dimitris Karagiannis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11788)

Abstract

For correct utilization of a modeling language and comprehension of a conceptual model, the graphical representation, i.e., the notation, is of paramount importance. A graphical notation, especially for domain-specific languages, should be aligned to the knowledge, beliefs, and expectations of the intended model users. More concretely, the notation of a modeling language should support computational offloading for the human user by increasing perceptual processing (i.e., seeing) and reducing cognitive processing (i.e., thinking and understanding). Consequently, method engineers should design intuitively understandable notations. However, there is a lack of support in evaluating the intuitiveness of a notation. This paper proposes an empirical evaluation technique for bridging that research gap. The technique comprises three independent experiments: term association, notation association, and case study. Usefulness of the technique is shown by an exemplary evaluation of a business continuity management modeling language.

Keywords

Conceptual modeling Domain-specific modeling Modeling language Notation Evaluation Business continuity management 

Notes

Acknowledgment

This research has been partly funded through the Federal Ministry of Education, Science and Research (BMBWF) funded France/Austria Joint Scientific and Technological Cooperation program with the project number FR 01/2019.

References

  1. 1.
    Plain English ISO 22301 2012 Business Continuity Definitions. http://www.praxiom.com/iso-22301-definitions.htm. Accessed 27 July 2019
  2. 2.
    Batini, C., Ceri, S., Navathe, S.B., et al.: Conceptual Database Design: An Entity-Relationship Approach, vol. 116. Benjamin/Cummings, Redwood City (1992)zbMATHGoogle Scholar
  3. 3.
    Bork, D., Buchmann, R.A., Karagiannis, D., Lee, M., Miron, E.T.: An open platform for modeling method conceptualization: the OMiLAB digital ecosystem. Commun. Assoc. Inf. Syst. 44, 673–697 (2019)Google Scholar
  4. 4.
    Bork, D., Karagiannis, D., Pittl, B.: Systematic analysis and evaluation of visual conceptual modeling language notations. In: 2018 12th International Conference on Research Challenges in Information Science (RCIS), pp. 1–11. IEEE (2018)Google Scholar
  5. 5.
    Bork, D., Karagiannis, D., Pittl, B.: A survey of modeling language specification techniques. Inf. Syst. 87, 101425 (2019)CrossRefGoogle Scholar
  6. 6.
    Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0: towards user comprehensible requirements engineering notations. In: 21st IEEE International Requirements Engineering Conference (RE), pp. 115–124. IEEE (2013)Google Scholar
  7. 7.
    El Kouhen, A., Gherbi, A., Dumoulin, C., Khendek, F.: On the semantic transparency of visual notations: experiments with UML. In: Fischer, J., Scheidgen, M., Schieferdecker, I., Reed, R. (eds.) SDL 2015. LNCS, vol. 9369, pp. 122–137. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24912-4_10CrossRefGoogle Scholar
  8. 8.
    Frank, U.: Domain-specific modeling languages: requirements analysis and design guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering, pp. 133–157. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36654-3_6CrossRefGoogle Scholar
  9. 9.
    Gulden, J., van der Linden, D., Aysolmaz, B.: A research agenda on visualizations in information systems engineering. In: 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering, pp. 234–240 (2016)Google Scholar
  10. 10.
    Henderson-Sellers, B., Ralyté, J.: Situational method engineering: state-of-the-art review. J. Univers. Comput. Sci. 16, 424–478 (2010)Google Scholar
  11. 11.
    Izquierdo, J.L.C., Cabot, J.: Collaboro: a collaborative (meta) modeling tool. PeerJ Comput. Sci. 2, e84 (2016)CrossRefGoogle Scholar
  12. 12.
    Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Third International Conference on E-Commerce and Web Technologies, EC-Web 2002, p. 182 (2002)Google Scholar
  13. 13.
    Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.): Domain-Specific Conceptual Modeling, Concepts, Methods and Tools. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39417-6CrossRefGoogle Scholar
  14. 14.
    Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for action: a revised quality framework. Eur. J. Inf. Syst. 15(1), 91–102 (2006)CrossRefGoogle Scholar
  15. 15.
    Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cogn. Sci. 11(1), 65–100 (1987)CrossRefGoogle Scholar
  16. 16.
    Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual modeling. IEEE Softw. 11(2), 42–49 (1994)CrossRefGoogle Scholar
  17. 17.
    Michael, J., Mayr, H.C.: Intuitive understanding of a modeling language. In: Australasian Computer Science Week Multiconference, p. 35. ACM (2017)Google Scholar
  18. 18.
    Moody, D.: The ‘physics’ of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)CrossRefGoogle Scholar
  19. 19.
    Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions. Data Knowl. Eng. 55(3), 243–276 (2005)CrossRefGoogle Scholar
  20. 20.
    Moody, D.L., Shanks, G.G.: What makes a good data model? Evaluating the quality of entity relationship models. In: Loucopoulos, P. (ed.) ER 1994. LNCS, vol. 881, pp. 94–111. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-58786-1_75CrossRefGoogle Scholar
  21. 21.
    Mylopoulos, J.: Conceptual modelling and Telos. In: Conceptual Modelling, Databases, and CASE: an Integrated View of Information System Development, pp. 49–68. Wiley , New York (1992)Google Scholar
  22. 22.
    Newell, A., Simon, H.A.: Human Problem Solving, vol. 104. Prentice-Hall, Englewood Cliffs (1972)Google Scholar
  23. 23.
    Petre, M.: Why looking isn’t always seeing: readership skills and graphical programming. Commun. ACM 38(6), 33–44 (1995)CrossRefGoogle Scholar
  24. 24.
    Recker, J.: Opportunities and constraints: the current struggle with BPMN. Bus. Process. Manag. J. 16(1), 181–201 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dominik Bork
    • 1
    Email author
  • Christine Schrüffer
    • 1
  • Dimitris Karagiannis
    • 1
  1. 1.Faculty of Computer ScienceUniversity of ViennaViennaAustria

Personalised recommendations